首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
A rapid method was developed to prepare organic montmorillonite (organo-MMT) using three novel Gemini surfactants by microwave irradiation of 1 h, which was more effective than conventional heating method of 8–48 h. The structure and morphology of organo-MMTs were characterized by XRD, FT-IR, TEM and SEM. The adsorption amount of Gemini surfactants on MMT and the thermal stability of organo-MMTs were investigated by thermogravimetric analysis (TGA). The results indicated that Gemini surfactants were more efficient than cetyltrimethyl ammonium bromide in the modification of MMT, the organoclays obtained by microwave irradiation method had larger layer spacing than those from traditional heating method. And with the increase of the dosage and chain length of Gemini surfactants, the amount of the intercalary or adsorbed surfactant on the organoclay gradually increased, whereas the thermal stability weakened appropriately. Besides, the adsorption results for methyl orange indicated that all organo-MMTs displayed more excellent adsorption capacities than unmodified MMT. The amount of methyl orange adsorbed onto the organo-MMTs increased proportionately with the increase of the amount or the chain length of Gemini surfactants. This study affords a rapid and efficient method to obtain the organoclay with large interlayer distance and strong adsorption capacity.  相似文献   

2.
Abstract

The interaction between oxprenolol hydrochloride and montmorillonite was studied by adsorption isotherms, x-ray diffraction and i.r. spectroscopy.

The adsorption isotherm fits Langmuir's equation and the maximum amount of oxprenolol adsorbed by the clay is 70 mEq/100 g of clay.

The results of x-ray diffraction studies and i.r. spectroscopy reveal that the oxprenolol molecule is adsorbed into the interlayer space of the clay and that the mechanism of adsorption is cation exchange.  相似文献   

3.
The interaction between oxprenolol hydrochloride and montmorillonite was studied by adsorption isotherms, x-ray diffraction and i.r. spectroscopy.

The adsorption isotherm fits Langmuir's equation and the maximum amount of oxprenolol adsorbed by the clay is 70 mEq/100 g of clay.

The results of x-ray diffraction studies and i.r. spectroscopy reveal that the oxprenolol molecule is adsorbed into the interlayer space of the clay and that the mechanism of adsorption is cation exchange.  相似文献   

4.
Montmorillonite nanoclays (PGV and PGN) were dispersed in poly(acrylic acid) (PAA) for utilization as reinforcing filler in glass ionomer cements (GICs). Chemical and physical interaction of PAA and nanoclay (PGV and PGN) was studied. PAA–PGV and PAA–PGN solutions were prepared in different weight percent loadings of PGV and PGN nanoclay (0.5–8.0 wt%) via exfoliation-adsorption method. Characterization was carried out by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and fourier transform infrared (FTIR) spectroscopy. XRD results of PAA–PGN demonstrated that the interlayer space expanded from 12.83 to 16.03 Å indicating intercalation whereas the absence of the peak at d 001 in PAA–PGV indicated exfoliation. XPS scans of PGV and PGN nanoclays depicted the main peak of O 1s photoelectron due to Si–O–M (M = Mg, Al, Fe) whereas, Si–O–Al linkages were identified by Si 2p or Si 2s and Al 2p or Al 2s peaks. The disappearance of the Na peak confirmed that PAA molecules exchanged sodium ions present on surface of silicate layers and significantly reduced the electrostatic van-der-Waals forces between silicate plates resulting in intercalation or exfoliation. FTIR spectra of PAA–nanoclay suspensions demonstrated the presence of a new peak at 1,019 cm?1 associated with Si–O– stretching vibrations which increased with increasing nanoclays concentration. Information concerning the dispersion of nanoclay in PAA aqueous solutions, chemical reaction and increase interlayer space in montmorillonite nanoclay is particularly useful regarding dispersion and reinforcement of nanoclay in PAA.  相似文献   

5.
The adsorption of paranitrophenol on organoclays synthesised by the ion exchange of the surfactant molecule dimethyldioctadecylammonium bromide (DDOAB) of formula (CH3(CH2)17)2NBr(CH3)2 has been studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and thermogravimetric analysis. The expansion of the montmorillonite depends on the loading of the montmorillonite with dimethyldioctadecylammonium bromide and is related to the arrangement of the surfactant molecules within the clay interlayer. This expansion is altered by the adsorbed paranitrophenol and is observed in the transmission electron microscopic images of the organoclay with adsorbed paranitrophenol. Changes in the surfactant molecular arrangements were analysed by thermogravimetry. The paranitrophenol is sublimed simultaneously with the loss of surfactant. The dehydroxylation temperature of the montmorillonite is decreased upon adsorption of the paranitrophenol indicating a bonding between the paranitrophenol and the hydroxyl units of the montmorillonite.  相似文献   

6.
采用密度泛函理论方法计算了不同甲基取代程度的甲基胺类(伯胺、仲胺、叔胺和季铵)的分子形式和离子形式在蒙脱石(001)表面上的吸附能、吸附平衡构型和差分电子密度,并测试了药剂作用后蒙脱石悬浮液上清液透光率、表面对药剂的吸附量和表面接触角。结果表明:甲基胺类离子形式在蒙脱石表面的吸附能比分子形式的大很多,可以稳定吸附在表面上;烷基胺中N原子上的甲基对H原子的取代程度越高,吸附能越小,对蒙脱石表面的疏水改性能力越差;甲基胺类阳离子主要通过静电作用和氢键作用吸附到蒙脱石表面上;药剂作用后蒙脱石悬浮液的上清液透光率、表面对药剂吸附量和表面接触角的试验结果与模拟结果相一致。  相似文献   

7.
铬簇合物及铬铝交联蒙脱石纳米复合材料的形成   总被引:3,自引:0,他引:3  
利用XRD、IR、DTA、比表面和吸氨量等方法研究2:1型的蒙脱石粘土矿物和铬簇合物[Cr3O(OOCCH3)6(OH2)3]Cl·6H2O(简记为CrC)交联剂的层间交联作用,并对铬铝交联蒙脱石纳米复合材料的制备方法、影响因素和性质作初步探讨.结果表明,交联剂分子种类、大小和Cr/Al比值对材料的层间距大小有十分重要的影响;而材料层间距大小、交联剂CrC/土的比例和Cr/Al比值则是影响材料的表面性质和热稳定性的重要因素.  相似文献   

8.
The adsorption of cesium onto crushed granite was investigated under different physicochemical conditions including contact time, Cs loading, ionic strength and temperature. In addition, the distribution of adsorbed Cs was examined by X-ray diffraction (XRD) and EDS mapping techniques. The results showed that Cs adsorption to crushed granite behaved as a first-order reaction with nice regression coefficients (R(2) > or = 0.971). Both Freundlich and Langmuir models were applicable to describe the adsorption. The maximum sorption capacity determined by Langmuir model was 80 micromol g(-1) at 25 degrees C and 10 micromol g(-1) at 55 degrees C. The reduced sorption capacity at high temperature was related to the partial enhancement of desorption from granite surface. In general, Cs adsorption was exothermic (DeltaH<0, with median of -12 kJ mol(-1)) and spontaneous (DeltaG<0, with median of -6.1 at 25 degrees C and -5.0 kJ mol(-1) at 55 degrees C). The presence of competing cations such as sodium and potassium ions in synthetic groundwater significantly reduces the Cs adsorption onto granite. The scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM/EDS) mapping method provided substantial evidences that micaceous minerals (biotite in this case) dominate Cs adsorption. These adsorbed Cs ions were notably distributed onto the frayed edges of biotite minerals. More importantly, the locations of these adsorbed Cs were coincided with the potassium depletion area, implying the displacement of K by Cs adsorption. Further XRD patterns displayed a decreased intensity of signal of biotite as the Cs loading increased, revealing that the interlayer space of biotite was affected by Cs adsorption.  相似文献   

9.
采用易于工业化的液相沉淀法,在石油磺酸盐的作用下,合成改性纳米氢氧化镁。通过沉降体积实验确定改性剂的最佳用量为0.2%(质量分数)。通过X射线衍射(XRD)、透射电镜(TEM)、N2吸附、堆密度分析等手段对改性前后样品进行表征分析。结果表明:改性后样品分散性好,结晶度高。红外光谱(FT-IR)和沉降实验结果表明:该方法可以使改性剂吸附在氢氧化镁颗粒表面,使氢氧化镁表面由亲水性变成亲油性,可提高氢氧化镁在有机介质中的分散稳定性。  相似文献   

10.
Interactive behavior of caffeine at a charged platinum/solution interface was investigated in a wide temperature range, from 295 to 333 K, in a phosphate buffer solution pH 7.0. It was shown that the amount of adsorbed caffeine (surface concentration) is directly proportional to the measured adsorption surface charge density resulting from caffeine oxidation to theophilline. At low temperatures, a monolayer of caffeine molecules laying in a flat orientation on the Pt surface is adsorbed, while at higher temperatures, conformational changes occur, resulting in tilting of the adsorbed molecules to allow for higher surface concentrations to be achieved. A highly negative Gibbs energy of adsorption, ranging from −51.1 kJ mol−1 at 295 K to −60.6 kJ mol−1 at 333 K, demonstrated a high affinity of caffeine for the Pt surface. Although the adsorption process was found to be endothermic (ΔHADS = 20 kJ mol−1), it was determined that a large positive change in the adsorption entropy (TΔSADS = 75 ± 3 kJ mol−1) represents the driving force for the strong interaction of caffeine with Pt.  相似文献   

11.
X-ray diffraction patterns (XRD), infrared Spectroscopy (IR) and near infrared spectroscopy (NIR) have been used to measure the adsorption of phenol on untreated montmorillonite and on hexadecyltrimethylammonium bromide (HDTMAB) modified montmorillonite. The mid infrared spectra indicate that both the surfactant molecule and phenol enter the interlayer of organoclays, replacing the interlayer cations. The higher concentration surfactant leads to a decrease in wavenumber of the bands of organoclays and to increase in intensity. The near infrared spectra (9000–4000 cm?1) show a prominent band 8260 cm?1, assigned to the combination result of the CH stretching vibrations of high concentration surfactant and absorbed phenol. The main band observed at 7090 cm?1 is assigned to the first fundamental overtone of the OH stretching vibrations at 3415 cm?1 for organoclay. The organoclays are characterised by prominent bands situated between 5900 and 5700 cm?1. Both the higher concentration of organic molecules and adsorbed phenol causing the near infrared spectra of organic clays to be more complex for spectra in the region from 4700 to 5500 cm?1. The main band of 4535 cm?1 for montmorillonite shifts towards the lower wavenumber sites for higher concentration organoclay. The intensity of near infrared spectra generally rises with the value of surfactant concentration increasing, showing certain regularity. It is concluded that phenol is adsorbed to significantly greater amounts on the higher concentration organoclays.  相似文献   

12.
The removal of phenol and o-cresol from water by a hybrid process of clay adsorption and ultrafiltration (clay-UF) was studied. Batch adsorption equilibrium experiments showed that the amount of adsorption for phenol and o-cresol decreased in the order kaolin>montmorillonite at an equilibrium pH (pH(e)) of 9.1. The clay-UF experiments were performed as a function of clay dose, solution pH, and transmembrane pressure. The role of pH in clay-UF process mainly depended on the acid-base nature of phenols and clays, and the charge of UF membrane. The rejection of phenol increased with increasing pH, and had a maximum at pH(e)=8.2 with kaolin but at pH(e)=9.1 with montmorillonite. The rejection of o-cresol also increased with increasing pH, and had a maximum at pH(e)=9.2 with kaolin but at pH(e)=10.2 with montmorillonite. Such differences between solute rejections depended on the pK(a) of the solutes, zeta potential of the clays, and surface charge of the membrane. The amount of soluble organics adsorbed onto the surface of membrane was negligible and the flux slightly decreased with increasing transmembrane pressure.  相似文献   

13.
Cr(III)-intercalated montmorillonite was utilized as an adsorbent for the removal of the organic pollutant, Supranol Yellow 4GL, a synthetic dye used for chemical fibres. The material was prepared by the reaction of Na montmorillonite with a base-hydrolyzed solution of Cr nitrate salt (OH(-)/Cr(3+) molar ratios of 2). XRD data showed that the interlayer spacing (d(001)) of montmorillonite was increased from 12.35 to 23.06 Angstroms. The kinetics and mechanism of the adsorption of the acid dye, Supranol Yellow 4GL, on Cr(III)-intercalated montmorillonite was investigated. The equilibrium time was reached within 30 min. The process follows pseudo-second-order rate kinetics. The Langmuir isotherm described the adsorption data over the concentration range (20-160 mg/l). The separator factor R(L) revealed the favourable nature of this adsorption process. Also, the thermodynamic parameters such as DeltaS degrees, DeltaH degrees, DeltaG degrees were determined.  相似文献   

14.
Atomic layer deposition of SiO2 from tris(dimethylamino)silane (TDMAS) and ozone as precursors on Si(100) surfaces at near-room temperatures was studied by infrared absorption spectroscopy with a multiple internal reflection geometry. TDMAS can be adsorbed at OH sites on hydroxylated Si surfaces at room temperature. Ozone oxidation of the TDMAS-treated Si surface is effective in removing hydroaminocarbon adsorbates introduced during TDMAS adsorption at room temperature. After oxidation by ozone, treatment with H2O vapor at a substrate temperature of around 160 °C causes regeneration of OH sites for TDMAS adsorption. Cycles involving TDMAS adsorption and ozonization at room temperature followed by H2O treatment at 160 °C permit the buildup of layers of SiO2. The amount of residual hydroaminocarbon at the interface between the growing SiO2 film and the substrate can be reduced with the ozone treated Si surface as a starting surface.  相似文献   

15.
《Advanced Powder Technology》2021,32(10):3465-3475
The quaternary ammonium surfactant-dodecyl benzyl ammonium chloride (DDBAC) was applied to modify Ca-montmorillonite (Ca-Mt) to obtain organo D-Mt that was used as the adsorbent for micropollutants-ampicillin (AMP) and amoxicillin (AMX). The XRD characterization indicated that DDBAC intercalated the interlayer space of Ca-Mt. When the amount of modifier was 1.4 CEC, the basal spacing enlarged from 1.53 nm to 2.97 nm, and the arrangement of modifier molecules were sloped in the interlayer of Ca-Mt along the longest axis. The saturated adsorption capacity of D-Mt-1.4 for AMP and AMX was 30.86 mg/g and 13.29 mg/g, respectively, while the saturated adsorption capacity of Ca-Mt for two contaminants was only 0.36 mg/g and 0.16 mg/g, respectively. The adsorption of the two pollutants was more consistent with Freundlich adsorption isotherm second-order kinetic model, and the thermodynamic study suggested that adsorption was more likely to occur at higher temperatures, which means that the adsorption of two pollutants was a spontaneous endothermic process. Moreover, Multiwfn wavefunction program based on Density Functional Theory (DFT) was applied to reveal the microadsorption mechanism of D-Mt to two pollutant molecules. This work confirmed that Ca-Mt functionalized by DDBAC was promising adsorbents for micro-contaminants of antibiotics and the insight of the adsorption mechanism from the atomic level, providing theoretical guidance for architecting high performance adsorbent.  相似文献   

16.
Adhesion of ice to a solid surface has been investigated by many researchers including one of authors. While, authors group clarified that it was possible to actively control a supercooling degree due to adsorption of surfactant molecules to a solid surface by varying surfactant concentrations. In this study, control of the ice adhesion force through the adsorption to a copper surface and its active control by varying surfactant concentrations are investigated. A surfactant-pure water mixture is frozen on a copper surface at a fixed surface temperature, and the adhesion forces are measured by a SPM, varying surfactant concentrations. While, the amounts of surfactant adsorbed to a copper surface are also measured by a QCM, varying surfactant concentrations. The possibility of active control of the adhesion force is evaluated based on the relationship between the ice adhesion force and the amount of adsorbed surfactant.  相似文献   

17.
ABSTRACT

Bentonites are types of clays made up the dominant constituent of montmorillonite. Four types of nano-porous and nano-structured commercial bentonite clays were studied in detail for their physicochemical and mineralogical properties vs. Cs and Sr adsorption. The instrumental analyses to study samples were X-ray diffraction (XRD), X-ray fluorescence (XRF), Brunauer–Emmett–Teller (BET) surface area measurements, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and thermogravimetry (TG). The XRF and peaks of XRD patterns at 2θ?=?8, 19.9, 35, 55, and 62 clearly indicated that the main component of the bentonite samples was montmorillonite. The BET analysis showed that B1 has the highest specific surface area among the other samples which its single and multiple point BET surface area were equal to 84.85 and 85.94?m2?g?1, respectively. These values represents the amount of montmorillonite and adsorption capacity of samples. The physicochemical, structural and morphological characteristics of different samples were investigated through instrumental analysis. The results of separation processes of Cs(I) and Sr(II) showed 59.75 and 45.5% adsorption capacities for B3 and B2 which were the highest values among the others. The results lead to the conclusion that samples B3 had a good adsorption capacity to remove Cs(I) and Sr(II).  相似文献   

18.
We investigate the selective adsorption of organosilane molecules (3-aminopropyltriethoxysilane (APTES) and octadecyltrichlorosilane (OTS)) at the step edges of a flattened Si(111) surface by atomic force microscopy. The flattened Si(111) surface is formed by dipping a vicinal Si(111) wafer into ultralow-dissolved-oxygen water after treatment with HF. The selective adsorption of these organosilanes is achieved only when the Si(111) sample is pretreated with a Cu-containing solution to form Cu wires along the step edges of the Si(111) surface. This is probably due to the simultaneous formation of one-dimensional Si oxide covered with hydroxyl (OH) groups underneath Cu wires during the electroless reduction of Cu ions in water. At the step edges, APTES and OTS molecules are adsorbed as disperse clusters and as rows of bumps, respectively. The reason for this difference is still unclear, but a key factor is probably the control of the moisture content in the environment. The step edges, which are functionalized by organosilane molecules with various terminations such as -NH2 and -CH3, are expected to be utilized in novel nanoscale devices and processes.  相似文献   

19.
Three procedures (P) were applied to prepare silver nanoparticles on natural Ca-montmorillonite (MT). The intercalation of the montmorillonite with silver nitrate in aqueous solution (P1), the intercalation of the montmorillonite with silver nitrate in glycerol (P2) and the successive combination of both P1 and P2 methods resulted to P3 method. X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Fourier Transform Infrared (FTIR) spectroscopy and the molecular modeling were employed to characterize silver nanoparticles and montmorillonite nanocomposite. The P1 produced MT-1 composite with 2.3 wt% Ag and the partially collapsed layered structure. Nanoparticles of silver larger than 20 nm with a lot of planar defects were randomly distributed on the MT-1 surface; nanoparticles smaller than 20 nm were oriented to the montmorillonite substrate. The MT-2 composite from P2 contained only 1 wt% of Ag. The molecular simulation model of MT-2 showed the interlayer space with the exchangeable cations and metallic silver atoms arrangement within the glycerol bilayer. The P3 produced composite MT-3 that contained 2.4 wt% Ag. The nanoparticles > 20 nm size had a well-defined geometry, very small nanoparticles were amorphous. The modeled structure showed the exchangeable cations, Ag+ and Ag0 located close to the silicate layers and monolayer of glycerol molecules in the interlayer space.  相似文献   

20.
In this work, XG extracted from Tamarindus indica (XGT) and Copaifera langsdorffii (XGC) seeds were deposited onto Si wafers as thin films. The characteristics of XGT and XGC adsorbed layers were compared with a commercial XG sample (TKP, Tamarind kernel powder) by ellipsometry and atomic force microscopy (AFM). Moreover, the adsorption of oxidized derivative of XGT (To60) onto amino-terminated Si wafers and the immobilization of bovine serum albumin (BSA) onto polysaccharides covered wafers, as a function of pH, were also investigated. The XG samples presented molar ratios Glc:Xyl:Gal of 2.4:2.1:1 (XGC); 2.8: 2.3: 1 (XGT) and 1.9:1.9:1 (TKP). The structure of XGT and XGC was determined by O-methy alditol acetate derivatization and showed similar features, but XGC confirmed the presence of more α-d-Xyl branches due to more β-d-Gal ends. XGT deposited onto Si adsorbed as fibers and small entities uniformly distributed, as evidenced by AFM, while TPK and XGC formed larger aggregates. The thickness of To60 onto amino-terminated surface was similar to that determined for XGT onto Si wafers. A maximum in the adsorbed amount of BSA occurred close to its isoelectric point (5.5). These findings indicate that XGT and To60 are potential materials for the development of biomaterials and biotechnological devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号