首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
A graded finite element method code based on Rayleigh–Ritz energy formulation is developed and implemented to study the elastic behavior of a layered plate loaded by a solid isotropic cylinder and a functionally graded interlayer. The applied nonaxisymmetric loading to the inner cylinder induces a stress concentration in the flexible part of the joint. The effects of different thicknesses and power law exponents of functionally graded interlayer on the distribution of displacements and stresses are investigated, which verifies the ability of functionally graded material to control the stress and displacement waves. The time-dependent response of the structure is also obtained based on Newmark's time integration method.  相似文献   

2.
An extended element free Galerkin method (XEFGM) has been adopted for fracture analysis of functionally graded materials (FGMs). Orthotropic enrichments functions are used along with the sub-triangle technique for enhancing the Gauss quadrature accuracy near the crack, and the incompatible interaction integral method is employed to calculate the stress intensity factors. Numerical simulations have proved that XEFGM provides more accurate results by less number of nodes (DOFs) in comparison with the unenriched EFGM and other conventional methods for several FGM problems with different crack locations and loadings. The results have been compared with the reference results, showing the reliability, stability, and efficiency of present XEFGM.

Received 9 June 2014 Accepted 17 September 2014.  相似文献   


3.
A new interaction integral formulation is developed for evaluating the elastic T-stress for mixed-mode crack problems with arbitrarily oriented straight or curved cracks in orthotropic nonhomogeneous materials. The development includes both the Lekhnitskii and Stroh formalisms. The former is physical and relatively simple, and the latter is mathematically elegant. The gradation of orthotropic material properties is integrated into the element stiffness matrix using a “generalized isoparametric formulation” and (special) graded elements. The specific types of material gradation considered include exponential and hyperbolic-tangent functions, but micromechanics models can also be considered within the scope of the present formulation. This paper investigates several fracture problems to validate the proposed method and also provides numerical solutions, which can be used as benchmark results (e.g. investigation of fracture specimens). The accuracy of results is verified by comparison with analytical solutions.  相似文献   

4.
In the present work, the extended finite element method has been used to simulate the fatigue crack growth problems in functionally graded material in the presence of holes, inclusions, and minor cracks under plastic and plane stress conditions for both edge and center cracks. Both soft and hard inclusions have been implemented in the problems. The validity of linear elastic fracture mechanics theory is limited to the brittle materials. Therefore, the elastic plastic fracture mechanics theory needs to be utilized to characterize the plastic behavior of the material. A generalized Ramberg-Osgood material model has been used for modeling purposes.  相似文献   

5.
This work investigates elastic-plastic crack growth in ceramic/metal functionally graded materials (FGMs). The study employs a phenomenological, cohesive zone model proposed by the authors and simulates crack growth by the gradual degradation of cohesive surfaces ahead of the crack front. The cohesive zone model uses six material-dependent parameters (the cohesive energy densities and the peak cohesive tractions of the ceramic and metal phases, respectively, and two cohesive gradation parameters) to describe the constitutive response of the material in the cohesive zone. A volume fraction based, elastic-plastic model (extension of the original Tamura-Tomota-Ozawa model) describes the elastic-plastic response of the bulk background material. The numerical analyses are performed using WARP3D, a fracture mechanics research finite element code, which incorporates solid elements with graded elastic and plastic properties and interface-cohesive elements coupled with the functionally graded cohesive zone model. Numerical values of volume fractions for the constituents specified at nodes of the finite element model set the spatial gradation of material properties with isoparametric interpolations inside interface elements and background solid elements to define pointwise material property values. The paper describes applications of the cohesive zone model and the computational scheme to analyze crack growth in a single-edge notch bend, SE(B), specimen made of a TiB/Ti FGM. Cohesive parameters are calibrated using the experimentally measured load versus average crack extension (across the thickness) responses of both Ti metal and TiB/Ti FGM SE(B) specimens. The numerical results show that with the calibrated cohesive gradation parameters for the TiB/Ti system, the load to cause crack extension in the FGM is much smaller than that for the metal. However, the crack initiation load for the TiB/Ti FGM with reduced cohesive gradation parameters (which may be achieved under different manufacturing conditions) could compare to that for the metal. Crack growth responses vary strongly with values of the exponent describing the volume fraction profile for the metal. The investigation also shows significant crack tunneling in the Ti metal SE(B) specimen. For the TiB/Ti FGM system, however, crack tunneling is pronounced only for a metal-rich specimen with relatively smaller cohesive gradation parameter for the metal.  相似文献   

6.
This paper is directed towards finite element computation of fracture parameters in functionally graded material (FGM) assemblages of arbitrary geometry with stationary cracks. Graded finite elements are developed where the elastic moduli are smooth functions of spatial co‐ordinates which are integrated into the element stiffness matrix. In particular, stress intensity factors for mode I and mixed‐mode two‐dimensional problems are evaluated and compared through three different approaches tailored for FGMs: path‐independent J*k‐integral, modified crack‐closure integral method, and displacement correlation technique. The accuracy of these methods is discussed based on comparison with available theoretical, experimental or numerical solutions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
A uniform extended multiscale finite element method is developed for solving the static and dynamic problems of heterogeneous materials in elasticity. To describe the complex deformation, a multinode two‐dimensional coarse element is proposed, and a new approach is elaborated to construct the displacement base functions of the coarse element. In addition, to improve the computational accuracy, the mode base functions are introduced to consider the effect of the inertial forces of the structure for dynamic problems. Furthermore, the orthogonality between the displacement and mode base functions is proved theoretically, which indicates that the proposed multiscale method can be used for the static and dynamic analyses uniformly. Numerical experiments show that the mode base functions almost do not work for the static problems, while they can improve the computational accuracy of the dynamic problems significantly. On the other hand, it is also found that the number of the macro nodes of the multinode coarse element has a great influence on the accuracy of the numerical results for both the static and dynamic analyses. Numerical examples also indicate that the uniform extended multiscale finite element method can obtain sufficiently accurate results with less computational cost compared with the standard FEM. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This study presents a thorough review of the applications of the Kantorovich method to several plate problems. The main objective of this review is to compile an up-to-date list of studies that employ the Kantorovich method, which is a semi-analytical numerical method, to bending, buckling, vibration, and three-dimensional elasticity problems of plates. The reviews highlight the derivations of the governing equations, which are written in form of ordinary differential equations, and the solution methods used to solve those equations. This review should be helpful for researchers and engineers to quickly gain an overview of the application of the method to thin-walled structures.  相似文献   

9.
This paper describes elastic–plastic crack growth resistance simulation in a ceramic/metal functionally graded material (FGM) under mode I loading conditions using cohesive zone and modified boundary layer (MBL) models. For this purpose, we first explore the applicability of two existing, phenomenological cohesive zone models for FGMs. Based on these investigations, we propose a new cohesive zone model. Then, we perform crack growth simulations for TiB/Ti FGM SE(B) and SE(T) specimens using the three cohesive zone models mentioned above. The crack growth resistance of the FGM is characterized by the J-integral. These results show that the two existing cohesive zone models overestimate the actual J value, whereas the model proposed in the present study closely captures the actual fracture and crack growth behaviors of the FGM. Finally, the cohesive zone models are employed in conjunction with the MBL model. The two existing cohesive zone models fail to produce the desired KT stress field for the MBL model. On the other hand, the proposed cohesive zone model yields the desired KT stress field for the MBL model, and thus yields J R curves that match the ones obtained from the SE(B) and SE(T) specimens. These results verify the application of the MBL model to simulate crack growth resistance in FGMs.  相似文献   

10.
11.
Functionally graded material (FGM) bars in axial motion (hereafter called “FGM axial bars”) have great potential for applications in many engineering fields. Therefore, it is important to develop a reliable mathematical model that can provide very accurate dynamic and wave propagation characteristics in FGM axial bars, especially at high frequencies. As an extension of our previous work, we present a spectral element model for a modified FGM axial bar model wherein nonuniform lateral contraction in the thickness direction is taken into account. We assume that material properties of the modified FGM axial bar model vary in the radial direction according to the power law. The performance of the proposed spectral element model is validated through comparison with solutions from a conventional finite element model, and with the results from the previous FGM axial bar model. In addition, the effects of lateral contraction on the dynamic and wave propagation characteristics in example FGM axial bars are numerically investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号