首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为解决粒子群优化算法存在的易早熟和精度低问题,提出了一种双层多种群粒子群优化算法.此算法采用上下两层,即下层N个基础种群和上层一个精英种群.各个基础种群相互独立进化,并从精英种群中得到优良信息指导自己的进化.上层精英种群首先通过接受各基础种群的当前最优粒子来更新自己的粒子集合,然后执行自适应变异操作,最后随机地向每一个基础种群输送出本次进化后的一个最优粒子来改进其下一轮搜索.该算法的并行双进化机制增加了群体的随机性和多样性,提高了全局搜索能力和收敛精度.实例仿真表明该算法具有较好的性能,尤其对于复杂多峰函数优化,成功率显著提高.  相似文献   

2.
Haoxiang Jie  Jianwan Ding 《工程优选》2013,45(11):1459-1480
In this article, an adaptive metamodel-based global optimization (AMGO) algorithm is presented to solve unconstrained black-box problems. In the AMGO algorithm, a type of hybrid model composed of kriging and augmented radial basis function (RBF) is used as the surrogate model. The weight factors of hybrid model are adaptively selected in the optimization process. To balance the local and global search, a sub-optimization problem is constructed during each iteration to determine the new iterative points. As numerical experiments, six standard two-dimensional test functions are selected to show the distributions of iterative points. The AMGO algorithm is also tested on seven well-known benchmark optimization problems and contrasted with three representative metamodel-based optimization methods: efficient global optimization (EGO), GutmannRBF and hybrid and adaptive metamodel (HAM). The test results demonstrate the efficiency and robustness of the proposed method. The AMGO algorithm is finally applied to the structural design of the import and export chamber of a cycloid gear pump, achieving satisfactory results.  相似文献   

3.
The reliability-redundancy optimization problems can involve the selection of components with multiple choices and redundancy levels that produce maximum benefits, and are subject to the cost, weight, and volume constraints. Many classical mathematical methods have failed in handling nonconvexities and nonsmoothness in reliability-redundancy optimization problems. As an alternative to the classical optimization approaches, the meta-heuristics have been given much attention by many researchers due to their ability to find an almost global optimal solutions. One of these meta-heuristics is the particle swarm optimization (PSO). PSO is a population-based heuristic optimization technique inspired by social behavior of bird flocking and fish schooling. This paper presents an efficient PSO algorithm based on Gaussian distribution and chaotic sequence (PSO-GC) to solve the reliability-redundancy optimization problems. In this context, two examples in reliability-redundancy design problems are evaluated. Simulation results demonstrate that the proposed PSO-GC is a promising optimization technique. PSO-GC performs well for the two examples of mixed-integer programming in reliability-redundancy applications considered in this paper. The solutions obtained by the PSO-GC are better than the previously best-known solutions available in the recent literature.  相似文献   

4.
The multistage hybrid flow-shop scheduling problem with multiprocessor tasks has been found in many practical situations. Due to the essential complexity of the problem, many researchers started to apply metaheuristics to solve the problem. In this paper, we address the problem by using particle swarm optimization (PSO), a novel metaheuristic inspired by the flocking behaviour of birds. The proposed PSO algorithm has several features, such as a new encoding scheme, an implementation of the best velocity equation and neighbourhood topology among several different variants, and an effective incorporation of local search. To verify the PSO algorithm, computational experiments are conducted to make a comparison with two existing genetic algorithms (GAs) and an ant colony system (ACS) algorithm based on the same benchmark problems. The results show that the proposed PSO algorithm outperforms all the existing algorithms for the considered problem.  相似文献   

5.
This article presents a particle swarm optimization algorithm for solving general constrained optimization problems. The proposed approach introduces different methods to update the particle's information, as well as the use of a double population and a special shake mechanism designed to avoid premature convergence. It also incorporates a simple constraint-handling technique. Twenty-four constrained optimization problems commonly adopted in the evolutionary optimization literature, as well as some structural optimization problems are adopted to validate the proposed approach. The results obtained by the proposed approach are compared with respect to those generated by algorithms representative of the state of the art in the area.  相似文献   

6.
基于微粒群优化的模型参考自适应控制   总被引:2,自引:0,他引:2  
针对复杂非线性对象提出了一种基于微粒群优化(PSO)的PID自适应控制方法.通过运用PSO算法对PID控制器参数进行在线调整,使模型参考自适应控制达到理想的控制效果.将该方法引入到连续搅拌反应釜这一复杂的非线性系统,仿真结果表明了该方法的良好性能.  相似文献   

7.
针对煤矿液压支架四连杆受力计算较为复杂,简化计算时易出现较大误差且稳定性较差的问题,提出从四连杆机构的空间受力出发并结合支架的运动轨迹,采用粒子群优化算法对四连杆机构展开优化研究。首先建立了四连杆优化模型,在优化模型中选取对结果影响较大的参数作为优化变量,以轨迹偏差、连杆长、连杆力之和作为目标函数,根据液压支架设计规范确定约束条件。然后使用粒子群算法对目标函数进行迭代求解并在求解过程中采用惩罚函数法解决优化模型中不等式约束问题。对比优化前后连杆的杆长、受力和稳定性数据,发现优化后的四连杆实现了轻量化,且受力较小,稳定性提高。研究结果对四连杆的设计有实际参考价值。  相似文献   

8.
This article presents a global optimization algorithm via the extension of the DIviding RECTangles (DIRECT) scheme to handle problems with computationally expensive simulations efficiently. The new optimization strategy improves the regular partition scheme of DIRECT to a flexible irregular partition scheme in order to utilize information from irregular points. The metamodelling technique is introduced to work with the flexible partition scheme to speed up the convergence, which is meaningful for simulation-based problems. Comparative results on eight representative benchmark problems and an engineering application with some existing global optimization algorithms indicate that the proposed global optimization strategy is promising for simulation-based problems in terms of efficiency and accuracy.  相似文献   

9.
This article presents an enhanced particle swarm optimization (EPSO) algorithm for size and shape optimization of truss structures. The proposed EPSO introduces a particle categorization mechanism into the particle swarm optimization (PSO) to eliminate unnecessary structural analyses during the optimization process and improve the computational efficiency of the PSO-based structural optimization. The numerical investigation, including three benchmark truss optimization problems, examines the efficiency of the EPSO. The results demonstrate that the particle categorization mechanism greatly reduces the computational requirements of the PSO-based approaches while maintaining the original search capability of the algorithms in solving optimization problems with computationally cheap objective function and expensive constraints.  相似文献   

10.
Hu Wang  Fan Ye  Enying Li  Guangyao Li 《工程优选》2016,48(8):1432-1458
Efficient global optimization (EGO) uses the surrogate uncertainty estimator called expected improvement (EI) to guide the selection of the next sampling candidates. Theoretically, any modelling methods can be integrated with the EI criterion. To improve the convergence ratio, a multi-surrogate efficient global optimization (MSEGO) was suggested. In practice, the EI-based optimization methods with different surrogates show widely divergent characteristics. Therefore, it is important to choose the most suitable algorithm for a certain problem. For this purpose, four single-surrogate efficient global optimizations (SSEGOs) and an MSEGO involving four surrogates are investigated. According to numerical tests, both the SSEGOs and the MSEGO are feasible for weak nonlinear problems. However, they are not robust for strong nonlinear problems, especially for multimodal and high-dimensional problems. Moreover, to investigate the feasibility of EGO in practice, a material identification benchmark is designed to demonstrate the performance of EGO methods. According to the tests in this study, the kriging EGO is generally the most robust method.  相似文献   

11.
Particle swarm optimization (PSO) is a population-based, heuristic technique based on social behaviour that performs well on a variety of problems including those with non-convex, non-smooth objective functions with multiple minima. However, the method can be computationally expensive in that a large number of function calls is required. This is a drawback when evaluations depend on an off-the-shelf simulation program, which is often the case in engineering applications. An algorithm is proposed which incorporates surrogates as a stand-in for the expensive objective function, within the PSO framework. Numerical results are presented on standard benchmarking problems and a simulation-based hydrology application to show that this hybrid can improve efficiency. A comparison is made between the application of a global PSO and a standard PSO to the same formulations with surrogates. Finally, data profiles, probability of success, and a measure of the signal-to-noise ratio of the the objective function are used to assess the use of a surrogate.  相似文献   

12.
Sami Barmada  Marco Raugi 《工程优选》2016,48(10):1740-1758
In this article, a new population-based algorithm for real-parameter global optimization is presented, which is denoted as self-organizing centroids optimization (SOC-opt). The proposed method uses a stochastic approach which is based on the sequential learning paradigm for self-organizing maps (SOMs). A modified version of the SOM is proposed where each cell contains an individual, which performs a search for a locally optimal solution and it is affected by the search for a global optimum. The movement of the individuals in the search space is based on a discrete-time dynamic filter, and various choices of this filter are possible to obtain different dynamics of the centroids. In this way, a general framework is defined where well-known algorithms represent a particular case. The proposed algorithm is validated through a set of problems, which include non-separable problems, and compared with state-of-the-art algorithms for global optimization.  相似文献   

13.
This work addresses the optimum design of a composite box-beam structure subject to strength constraints. Such box-beams are used as the main load carrying members of helicopter rotor blades. A computationally efficient analytical model for box-beam is used. Optimal ply orientation angles are sought which maximize the failure margins with respect to the applied loading. The Tsai–Wu–Hahn failure criterion is used to calculate the reserve factor for each wall and ply and the minimum reserve factor is maximized. Ply angles are used as design variables and various cases of initial starting design and loadings are investigated. Both gradient-based and particle swarm optimization (PSO) methods are used. It is found that the optimization approach leads to the design of a box-beam with greatly improved reserve factors which can be useful for helicopter rotor structures. While the PSO yields globally best designs, the gradient-based method can also be used with appropriate starting designs to obtain useful designs efficiently.  相似文献   

14.
针对某特种车辆传动系统由于结构布局限制导致的主轴两侧非等强度设计问题,综合考虑传动主轴-轴承系统内外多源激励,采用集中质量法建立系统非线性振动模型.基于所建立的模型,利用Runge-Kutta进行数值仿真求解,分析了稳态工况下系统弯扭耦合振动响应以及系统动载荷和振动能量的分布特点,得出了主轴右侧断裂的主要原因.为解决传...  相似文献   

15.
An optical image watermarking algorithm, based on singular value decomposition (SVD) ghost imaging and multiple transforms, is designed. The watermark image is first encrypted by applying an SVD ghost imaging system, then the encrypted watermark is embedded into the cover image with the help of multiple transforms, including lifting wavelet transform (LWT), discrete cosine transform (DCT), discrete fractional angular transform (DFAT) and SVD. Four sub-band images are produced from the host image by LWT and DCT. The improved DFAT, whose scaling factors and parameter are optimized by particle swarm optimization algorithm, is operated in the new matrix. Afterwards, SVD is executed in the two-part image and the encrypted watermark is embedded in the host image by mutual operation of different matrices. Simulation results validate that the proposed watermark scheme is superior in the aspects of security, robustness and imperceptibility.  相似文献   

16.
This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.  相似文献   

17.
Y. C. Lu  J. C. Jan  G. H. Hung 《工程优选》2013,45(10):1251-1271
This work develops an augmented particle swarm optimization (AugPSO) algorithm using two new strategies,: boundary-shifting and particle-position-resetting. The purpose of the algorithm is to optimize the design of truss structures. Inspired by a heuristic, the boundary-shifting approach forces particles to move to the boundary between feasible and infeasible regions in order to increase the convergence rate in searching. The purpose of the particle-position-resetting approach, motivated by mutation scheme in genetic algorithms (GAs), is to increase the diversity of particles and to prevent the solution of particles from falling into local minima. The performance of the AugPSO algorithm was tested on four benchmark truss design problems involving 10, 25, 72 and 120 bars. The convergence rates and final solutions achieved were compared among the simple PSO, the PSO with passive congregation (PSOPC) and the AugPSO algorithms. The numerical results indicate that the new AugPSO algorithm outperforms the simple PSO and PSOPC algorithms. The AugPSO achieved a new and superior optimal solution to the 120-bar truss design problem. Numerical analyses showed that the AugPSO algorithm is more robust than the PSO and PSOPC algorithms.  相似文献   

18.
This article presents the use of particle swarm optimization (PSO) for a class of non-stationary environments. The dynamic problems studied in this work are restricted to one of the possible types of changes that can be produced over the fitness landscape. A hybrid PSO approach (called HPSO_dyn) is proposed, which uses a dynamic macromutation operator to maintain diversity. In order to validate the approach, a test case generator previously proposed in the specialized literature was adopted. Such a test case generator allows the creation of different types of dynamic environments with a varying degree of complexity. The main goals of this research were to analyze the ability of HPSO_dyn to react to the changes in the environment, to study the influence of the dynamic macromutation operator on the algorithm's performance and finally, to analyze the algorithm's behavior in the presence of high multimodality.  相似文献   

19.
Yanfang Ma 《工程优选》2013,45(6):825-842
This article puts forward a cloud theory-based particle swarm optimization (CTPSO) algorithm for solving a variant of the vehicle routing problem, namely a multiple decision maker vehicle routing problem with fuzzy random time windows (MDVRPFRTW). A new mathematical model is developed for the proposed problem in which fuzzy random theory is used to describe the time windows and bi-level programming is applied to describe the relationship between the multiple decision makers. To solve the problem, a cloud theory-based particle swarm optimization (CTPSO) is proposed. More specifically, this approach makes improvements in initialization, inertia weight and particle updates to overcome the shortcomings of the basic particle swarm optimization (PSO). Parameter tests and results analysis are presented to highlight the performance of the optimization method, and comparison of the algorithm with the basic PSO and the genetic algorithm demonstrates its efficiency.  相似文献   

20.
Weian Guo  Wuzhao Li  Qun Zhang  Lei Wang  Qidi Wu 《工程优选》2014,46(11):1465-1484
In evolutionary algorithms, elites are crucial to maintain good features in solutions. However, too many elites can make the evolutionary process stagnate and cannot enhance the performance. This article employs particle swarm optimization (PSO) and biogeography-based optimization (BBO) to propose a hybrid algorithm termed biogeography-based particle swarm optimization (BPSO) which could make a large number of elites effective in searching optima. In this algorithm, the whole population is split into several subgroups; BBO is employed to search within each subgroup and PSO for the global search. Since not all the population is used in PSO, this structure overcomes the premature convergence in the original PSO. Time complexity analysis shows that the novel algorithm does not increase the time consumption. Fourteen numerical benchmarks and four engineering problems with constraints are used to test the BPSO. To better deal with constraints, a fuzzy strategy for the number of elites is investigated. The simulation results validate the feasibility and effectiveness of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号