首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is now recognized that some organic components of ambient aerosols absorb light with a spectrum distinct from that of other absorbers such as black carbon and mineral components. The most common method for isolating this light-absorbing organic fraction, or “brown carbon,” is to collect particulate matter on filters and extract in a solvent, usually water or methanol. Here, we compare the absorption spectra of water-soluble (WS) and methanol-soluble (MS) extracts from ambient samples collected in Athens, Georgia. We find that despite syringe filtering the MS extracts, extinction by suspended particles is evident in the spectra leading to an overestimation of absorption by a factor of two on average. No such particle extinction is evident in the WS extracts. We demonstrate that it is possible to subtract the extinction contribution in the MS extracts by fitting the spectrum to the sum of two power-law functions, one describing the absorption spectrum and the other describing the extinction spectrum. With extinction thus removed, we find that integrated absorption (300–800 nm) by the MS brown carbon extract is highly correlated with the WS extract and is on average 1.55× larger. The wavelength dependence of the WS and MS spectra are also correlated and very similar with average absorption Ångström exponents of 6.1 (±0.7) and 6.7 (±1.1), respectively. This study demonstrates that for the samples collected: (1) brown carbon absorption can be overestimated if scattering in MS spectra is not accounted for, (2) there is no spectral evidence that the WS and MS chromophores are different, and (3) it may be possible to use WS spectra to represent total brown carbon absorption using a simple scaling factor. These findings may differ for other types of aerosol samples and analytical methods.

© 2017 American Association for Aerosol Research  相似文献   


2.
A novel air sampling monitor was developed for near-continuous (i.e., 2-h time resolution) measurement of iron (Fe), manganese (Mn), and chromium (Cr) concentrations in ambient coarse particulate matter (PM) (i.e., PM10–2.5). The developed monitor consists of two modules: (1) the coarse PM collection module, utilizing two virtual impactors (VIs) connected to a modified BioSampler to collect ambient coarse PM into aqueous slurry samples; (2) the metal concentration measurement module, which quantifies the light absorption of colored complexes formed through the reactions between the soluble and solubilized target metals and pertinent analytical reagents in the collected slurries using a micro volume flow cell (MVFC) coupled with UV/VIS spectrophotometry. The developed monitor was deployed in the field for continuous ambient PM collection and measurements from January to April 2016 to evaluate its performance and reliability. Overall, the developed monitor could achieve accurate and reliable measurements of the trace metals Fe, Mn, and Cr over long sampling periods, based on the agreement between the metal concentrations measured via this online monitor and off-line parallel measurements obtained using filter samplers. Based on our results, it can be concluded that the developed monitor is a promising technology for near-continuous measurements of metal concentrations in ambient coarse PM. Moreover, this monitor can be readily configured to measure the speciation (i.e., water-soluble portion as well as specific oxidation states) of these metal species. These unique abilities are essential tools in investigations of sources and atmospheric processes influencing the concentrations of these redox-active metals in coarse PM.

Copyright © 2016 American Association for Aerosol Research  相似文献   


3.
Particulate matter (PM) from mining operations, engines, and ore processing may have adverse effects on health and well-being of workers and population living nearby. In this study, the characteristics of PM in an underground chrome mine were investigated in Kemi, Northern Finland. The concentrations and chemical composition of PM in size ranges from 2.5 nm to 10 µm were explored in order to identify sources, formation mechanisms, and post-emission processes of particles in the mine air. This was done by using several online instruments with high time-resolution and offline particulate sampling followed by elemental and ionic analyses. A majority of sub-micrometer particles (<1 µm in diameter, PM1) originated from diesel engine emissions that were responsible for a rather stable composition of PM1 in the mine air. Another sub-micrometer particle type originated from the combustion products of explosives (e.g., nitrate and ammonium). On average, PM1 in the mine was composed of 62%, 30%, and 8% of organic matter, black carbon, and major inorganic species, respectively. Regarding the analyzed elements (e.g., Al, Si, Fe, Ca), many of them peaked at >1 µm indicating mineral dust origin. The average particle number concentration in the mine was (2.3 ± 1.4)*104 #/cm3. The maximum of particle number size distribution was between 30 and 200 nm for most of the time but there was frequently a distinct mode <30 nm. The potential origin of nano-size particles remained as challenge for future studies.

Copyright © 2018 The Authors. Published with license by Taylor & Francis  相似文献   


4.
We introduce a new method to estimate the mass concentration of particulate organic carbon (POC) collected on quartz filters, demonstrating it using quartz-filter samples collected in greater Pittsburgh. This method combines thermal-optical organic carbon and elemental carbon (OC/EC) analysis and the volatility basis set (VBS) to quantify the mass concentration of semi-volatile POC on the filters. The dataset includes ambient samples collected at a number of sites in both summer and winter as well as samples from a highway tunnel. As a reference we use the two-filter bare-Quartz minus Quartz-Behind-Teflon (Q-QBT) approach to estimate the adsorbed gaseous fraction of organic carbon (OC), finding a substantial fraction in both the gas and particle phases under all conditions. In the new method we use OC fractions measured during different temperature stages of the OC/EC analysis for the single bare-quartz (BQ) filter in combination with partitioning theory to predict the volatility distributions of the measured OC, which we describe with the VBS. The effective volatility bins are consistent for data from both ambient samples and primary organic aerosol (POA)-enriched tunnel samples. Consequently, with the VBS model and total OC fractions measured over different heating stages, particulate OC can be determined by using the BQ filter alone. This method can thus be applied to all quartz filter-based OC/EC analyses to estimate the POC concentration without using backup filters.

© 2016 American Association for Aerosol Research  相似文献   


5.
The aerosol mass spectrometer (AMS) and aerosol chemical speciation monitor (ACSM) are widely used for quantifying aerosol composition. The quantification uncertainty of these instruments is dominated by the collection efficiency (CE) due to particle bounce. A new “capture vaporizer” (CV) has been recently developed to achieve unit CE. In this study, we examine the performance of the CV while sampling ambient aerosols. AMS/ACSMs using the original standard vaporizer (SV) and CV were operated in parallel during three field studies. Concentrations measured with the CV (assuming CE = 1) and SV (using the composition-dependent CE of Middlebrook et al.), as well as SMPS and PILS-IC are compared. Agreement is good in all cases, verifying that CE ~ 1 in the CV when sampling ambient particles. Specific findings include: (a) The fragmentation pattern of ambient nitrate and sulfate species observed with the CV was shifted to smaller m/z, suggesting additional thermal decomposition. (b) The differences in fragmentation patterns of organic vs. inorganic nitrate and sulfur species are still distinguishable in the CV, however, with much lower signal-to-noise compared to the SV. (c) Size distribution broadening is significant, but its impact is limited in field studies since ambient distributions are typically quite broad. Consistent size distributions were measured with the SV and CV. (d) In biogenic areas, UMR nitrate is overestimated based on the default fragmentation table (~factor of 2–3 in SOAS) for both vaporizers, due to underestimation of the organic interferences. We also report a new type of small interference: artifact chloride signal can be observed in the AMS when high nitrate mass concentration is sampled with both the SV (~0.5% chloride/nitrate) or CV (~0.2% chloride/nitrate). Our results support the improved quantification with the CV AMS and characterize its chemical detection properties.

Copyright © 2017 American Association for Aerosol Research  相似文献   


6.
The ability of an atmospheric aerosol particle to impact climate by acting as a cloud condensation nucleus (CCN) or an ice nucleus (IN), as well as scatter and absorb solar radiation is determined by its physicochemical properties at the single particle level, specifically size, morphology, and chemical composition. The identification of the secondary species present in individual aerosol particles is important as aging, which leads to the formation of these species, can modify the climate relevant behavior of particles. Raman microspectroscopy has a great deal of promise for identifying secondary species and their mixing with primary components, as it can provide detailed information on functional groups present, morphology, and internal structure. However, as with many other detailed spectroscopic techniques, manual analysis by Raman microspectroscopy can be slow, limiting single particle statistics and the number of samples that can be analyzed. Herein, the application of computer-controlled Raman (CC-Raman) for detailed physicochemical analysis that increases throughput and minimizes user bias is described. CC-Raman applies automated mapping to increase analysis speed allowing for up to 100 particles to be analyzed in an hour. CC-Raman is applied to both laboratory and ambient samples to demonstrate its utility for the analysis of both primary and, most importantly, secondary components (sulfate, nitrate, ammonium, and organic material). Reproducibility and precision are compared to computer controlled-scanning electron microscopy (CCSEM). The greater sample throughput shows the potential for CC-Raman to improve particle statistics and advance our understanding of aerosol particle composition and mixing state, and, thus, climate-relevant properties.

© 2017 American Association for Aerosol Research  相似文献   


7.
The aerodynamic lens system of the Aerodyne Aerosol Mass Spectrometer (AMS) was analyzed using the Aerodynamic Lens Calculator. Using this tool, key loss mechanisms were identified, and a new lens design that can extend the transmission of particulate matter up to 2.5 μm in diameter (PM2.5) was proposed. The new lens was fabricated and experimentally characterized. Test results indicate that this modification to the AMS lens can significantly improve the transmission of large sized particles, successfully achieving a high transmission efficiency up to PM2.5 range.

© 2016 American Association for Aerosol Research  相似文献   


8.
Fourier transform infrared spectroscopy (FT-IR) has been used to predict elemental carbon (EC) on polytetrafluoroethylene (PTFE) filter samples from the United States Environmental Protection Agency's Chemical Speciation Network (CSN). This study provides a proof-of-principle demonstration of using multilevel modeling to determine thermal/optical reflectance (TOR) equivalent EC (a.k.a., FT-IR EC) on PTFE samples collected in the CSN. Initially, spectra from nine geographically disperse sites were pooled and calibrated directly to collocated TOR EC measurements. The FT-IR EC quantified in test samples was deemed substandard when judged against an earlier study, e.g., R2 = 0.760 and median absolute deviation (MAD) = 26.7%. Upon scrutinizing each sample's absolute prediction error and squared Mahalanobis distance, Elizabeth, NJ predictions were found to exhibit atypical systematic errors, motivating the development of a multilevel classification and calibration procedure. Atypical Elizabeth spectra were distinguished from the (typical) CSN spectra by training a partial least-square discriminant analysis. Predicting EC using calibrations dedicated to either atypical or typical samples produced a satisfactory improvement in overall performance (R2 = 0.886, MAD = 19.8%). Analysis of the atypical FT-IR spectra and select TOR thermal fractions suggested that Elizabeth samples contained elevated levels of diesel particulate matter as evidenced by the use of organic nitrogen functional groups for prediction, very low average OC/EC, and minimal charring during TOR speciation. FT-IR EC from the other eight sites was predominately determined by aliphatic C-H, C = C aromatic, and functional groups associated with oxidation. This study provides preliminary confirmation that FT-IR EC may be accurately determined from source-oriented calibrations under a combined classification and calibration methodology.

Copyright © 2018 American Association for Aerosol Research  相似文献   


9.
The Aerosol Mass Spectrometer (AMS) and Aerosol Chemical Speciation Monitor (ACSM) are widely used for quantifying submicron aerosol mass concentration and composition, in particular for organic aerosols (OA). Using the standard vaporizer (SV) installed in almost all commercial instruments, a collection efficiency (CE) correction, varying with aerosol phase and chemical composition, is needed to account for particle bounce losses. Recently, a new “capture vaporizer” (CV) has been shown to achieve CE~1 for ambient aerosols, but its chemical detection properties show some differences from the SV due to the increased residence time of particles and vaporized molecules inside the CV. This study reports on the properties and changes of mass spectra of OA in CV-AMS using both AMS and ACSM for the first time. Compared with SV spectra, larger molecular-weight fragments tend to shift toward smaller ions in the CV due to additional thermal decomposition arising from increased residence time and hot surface collisions. Artifact CO+ ions (and to a lesser extent, H2O+), when sampling long chain alkane/alkene-like OA (e.g., squalene) in the CV during the laboratory studies, are observed, probably caused by chemical reactions between sampled OA and molybdenum oxides on the vaporizer surfaces (with the carbon derived from the incident OA). No evidence for such CO+ enhancement is observed for ambient OA. Tracer ion marker fractions (fm/z =, i.e., the ratio of the organic signal at a given m/z to the total OA signal), which are used to characterize the impact of different sources are still present and usable in the CV. A public, web-based spectral database for mass spectra from CV-AMS has been established.

Copyright © 2018 American Association for Aerosol Research  相似文献   


10.
Discrepancies between modeled and measured atmospheric organic aerosol (OA) have highlighted the need for in situ instrumentation to better characterize the sources, formation mechanisms, and atmospheric evolution of ambient OA. We have developed the Volatility and Polarity Separator (VAPS) for hourly measurements of volatility- and polarity-resolved OA detected using high-resolution time-of-flight mass spectrometry (HR-ToF-MS). Here, atmospheric OA is inertially impacted onto a collection cell, material is transferred onto a short transfer line located inside a gas chromatography (GC) oven, the oven is heated to provide a first-dimension separation of volatility, then thermally pulsed through a short polar GC column for a second-dimension polarity separation, and finally detected by HR-ToF-MS. This novel instrument increases the mass throughput of ambient OA in comparison to traditional GC due to shorter transfer paths and passivated coatings. Molecular separation resolution is partially sacrificed for this increased mass recovery, but the high-resolution mass spectral data recovers information such as chemical classes and even some individual compounds along with elemental composition to determine aerosol oxidation states. Different techniques for interpreting and representing VAPS data are considered and its applicability to positive matrix factorization (PMF) analysis is demonstrated.

Copyright © 2016 American Association for Aerosol Research  相似文献   


11.
A particle trap laser desorption mass spectrometer (PT-LDMS) has been developed for the online measurements of the chemical composition of submicron aerosol particles. The PT-LDMS was evaluated by both laboratory and ambient measurements, with the focus being the quantification of sulfate aerosols. Ammonium sulfate ((NH4)2SO4) is generally the predominant form of sulfate aerosols in urban air; hence, it is used as a material for laboratory experiments and calibration. Major fragments of (NH4)2SO4 were observed at mass-to-charge ratios (m/z) of 48 (SO+) and 64 (SO2+). The dependence of sensitivity (expressed as the ratio of m/z 48 signal to sulfate mass) on laser power and cell temperature was investigated. An intercomparison of PT-LDMS with a commercial sulfate particle analyzer (SPA) and filter sampling was performed in Tokyo. Good agreement was observed between SPA and filter analysis (slope = 0.98, r2 = 0.99). Although the mass concentration of sulfate measured by PT-LDMS exhibited a tight correlation with that measured by SPA, the mass concentration measured by PT-LDMS tended to underestimate that measured by SPA (slope = 0.70, r2 = 0.96). While the discrepancy can be mainly attributed to the difference in size cut between PT-LDMS (approximately PM1) and SPA (PM2.5), differences in vaporization efficiency were also found to be important.

Copyright © 2016 American Association for Aerosol Research  相似文献   


12.
The measurement of particulate matter induced oxidative potential activity by dithiothreitol (DTT) as an alternative quantitative method has been of recent interest. The mechanism of this process is not well understood. Proposed mechanisms often involve formation of the hydrogen peroxide as the final step. Evidence suggests that this may not be the dominant route. We applied computational methods to determine a possible alternative mechanism in the presence of ·OH radical production. An energetically favored mechanism was found for DTT-chemical reactivity reaction which is consistent with previously reported experimental results.  相似文献   

13.
14.
The kinetics and mechanism for electrochemical reduction of haloperidol, a psychotherapeutic drug used in the treatment of schizophrenia, were studied using square wave and cyclic voltammetries allied to a hanging mercury drop electrode. The experimental and voltammetric parameters were optimized at 0.04 mol L−1 Brinton–Robinson buffer (pH 10), with a pulse potential frequency of 100 s−1, a pulse amplitude of 30 mV and scan increment of 2 mV. Two well-defined peaks were observed, which exhibited properties of fast electron transfer with a strong adsorption process of reactants and products on the electrode surface. The first peak was related to a fast and reversible anion-radical formation originating from the reduction of the carbonyl group, and the second was related to the irreversible reduction of the anion-radical previously formed. Analytical parameters such as: linearity range, equation of the analytical curves, correlation coefficients, detection and quantification limits, recovery efficiency, and relative standard deviation for intraday and interday were compared to similar results obtained by use of the UV–vis spectrophotometry technique, and the analytical results obtained in commercial formulations show that the voltammetric procedure using a hanging mercury drop electrode is suitable for analyzing haloperidol in complex commercial formulation samples.  相似文献   

15.
A kaolinite type of clay made radioactive by neutron irradiation (Spinks Bandy Black), described in an earlier report, has undergone extensive testing to determine its suitability as a particulate component of an artificial radioactive soil. The other components of the soil are labeled with14C and tritium. The incorporation of the radioactive clay into an established soil required the development of a reproducible padding procedure and the development of suitable analytical methods for the clay, as well as modification of the existing method for14C and tritium in the presence of the radioactive clay. A problem arose when it was noticed that, after the padding step, the specific activity of the clay adhering to the fabric was higher than the starting clay. This was traced to the fact that Spinks Bandy Black is not only a mixture of varying particle sizes, but of changing chemical composition with varying particle size. Thus, one could not readily convert radioactivity to weight. The problem has been resolved by resorting to chemical analysis for SiO2 and Al2O3 of a few representative swatches from each padding run to give the weight of clay per swatch and thus the specific activity. Chemical and radiochemical analyses of the swatches after laundering have demonstrated that further disproportionation of the clay is minor. A large Terg-O-tometer washing study was made under a variety of conditions to determine the precision of the method for all three labeled components of the soil. It was found from sets of four replicates that the precision for clay detergency is ±2.5%; for the polar fatty soil detergency (14C) is ±2.3%; and for the nonpolar fatty soil detergency (tritium) is ±3.5%. Redeposition of the clay in the presence of a built detergent is usually less than 1%.  相似文献   

16.
This paper proposes that a diesel oxidation catalyst (DOC) operating within the fully turbulent flow regime is an efficient means of reducing the contents of particulate matter in the exhaust gases. The suggested mode of operation is in contrast to the fact that the DOCs are typically operated within the laminar flow regime. In the paper, the particle trapping efficiency and pollutant conversion in turbulent ceramic DOCs are calculated using both mass-transfer correlations available in the literature and computational fluid dynamics (CFD). It is shown that a turbulent DOC substantially increases the removal of small particulates from the exhaust gases. This indicates the potential of the aftertreatment system to comply with the forthcoming number-based emission legislations on particulate matter. In addition, the turbulent DOC can be used to optimize the overall performance of a combined system consisting of a DOC and a diesel particulate filter.  相似文献   

17.
Eight institutes using 12 different instruments analyzed newly developed multi-element reference materials (RM) for atmospheric particulate matter (PM) measurements. These RM have the potential to fill a gap in the currently available quality assurance resources for element analysis of PM samples such as X-ray fluorescence and inductively-coupled plasma mass spectrometry. This study evaluates the performance of these new RM generated by the University of California, Davis. The methodological challenge was to determine the reference loadings on the RM. Gravimetry is the most robust method to determine the sample deposit mass but cannot be used for these RM because some solution components are volatile and result in unpredictable total mass loadings on the RM. Instead of using gravimetry, a single well-measured element, along with the assumption that the relative mass fractions in the solutions were maintained in the aerosol deposited on the filters, was used to determine the reference loadings on the RM. This assumption appears to be valid for most elements in the solutions; notable exceptions include volatile species such as chlorine and bromine. Results from the 12 different instruments in the inter-laboratory evaluation agreed very well with the reference loadings (adjusted R2 > 0.9 and slope between 0.7 and 1.3) for 17 of the 28 elements. In many cases, one or two instruments did not meet the performance criteria, which points to individual instrument calibration problems. For the 11 elements that did not perform as well, development work continues, and this intercomparison helped identify and fix a source of contamination in the system used to create the RM.

Copyright © 2019 American Association for Aerosol Research  相似文献   


18.
Measurments on powders using photoacoustic (PAS) and photothermal (PTS) spectroscopic techniques are described. These methods avail themselves of the heat that is generated in a sample upon irradiation, which can be used to analyse and identify the sample through its absorption spectrum.Three different techniques have been used to extract the required information: (i) By having the specimen inside a chamber, illuminating it through a window and recording the resulting pressure variations; (ii) similarly, only having the sample outside the chamber but in contact with a membrane in the chamber wall: (iii) by measuring the extra thermal emission from the object when heated upon illumination. The advantages of using PAS and PTS methods to powder analysis are presented, and their applications to in-stream measurements of particulate solid properties are discussed.  相似文献   

19.
A sample of kaolinite clay has been tagged by neutron irradiation. After an extended cooling period (18 months) to allow the short lived nuclides to decay, the clay is still sufficiently radioactive to use it in detergency studies. Extraction tests show that about 25% of the radioactivity is labile, i.e., removed by sodium tripolyphosphate but that the remainder is strongly fixed in the clay matrix, resisting extraction by built detergents. The clay has a number of nuclides emitting both beta and gamma radiation. Analytical methods for both types of radiation have been developed for use with fabrics and wash waters. The clay has been combined with the doubly labeled fatty soil (3H and14C) to make a triply labeled particulate soil. Tergotometer runs with three test fabrics show good precision for all three labeled components of the soil. Redeposition measurements were also made and showed that a considerable fraction of the residual clay on a washed swatch may in fact be due to redeposition rather than retention. Some problems remain in the application of this synthetic soil: the padding step must be modified so that the clay is more tenaciously bound to the fabric; a more automatic method of padding is required to handle large numbers of samples; the specific activity of the clay should be increased so that liquid scintillation analysis for all three tagged components can be made on a single sample of wash water. Presented at the AACC-AOCS Joint Meeting, 1968, Washington, D.C.  相似文献   

20.
Knowledge of the modality of the size distribution of particulate matter (PM) from pulverized coal combustion is of great significance from the viewpoint of exposure and risk assessment. Mass or number size distributions are usually used in modality analyses, but sometimes the central particle mode fails to be detected due to overlapping. This work provides a new method for identifying particle modes using mass fraction size distributions of the aluminum (Al). Five Chinese pulverized coals of different ranks were burnt in a laboratory drop tube furnace at 1673 K. The produced PM was size segregated by a low pressure impactor and subjected to elemental composition analysis by X-ray fluorescence (XRF). Particle mass size distributions, mass fraction size distributions of the Al and sulfur (S) were obtained for all the particle samples. The mass size distributions of four coal ash samples all show three distinct particle modes, with a central mode at approximately 2 µm, while the mass size distribution of the LPS coal ash sample only indicates two particle modes. However, the mass fraction size distributions of the Al for all ash samples, including the LPS coal ash sample, generally show three particle modes. The obscurity of the central mode in the mass size distribution of the LPS coal ash sample is expected to be a consequence of the merging of it into the coarse mode. The formation of the central mode is attributed to the more pronounced heterogeneous condensation or adsorption of vaporized species on fine residual ash particles, whose origins are still unclear at present. This is further confirmed by examination of the mass fraction size distributions of the S. These results show that mass fraction size distributions of the Al seem to be more effective in identifying particle modes and their size boundaries than particle mass size distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号