首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a new proposal of using particle swarm optimization algorithms to solve multi-objective optimization problems is presented. The algorithm is constructed based on the concept of Pareto dominance, as well as a state-of-the-art ‘parallel’ computing technique that intends to improve algorithmic effectiveness and efficiency simultaneously. The proposed parallel particle swarm multi-objective evolutionary algorithm (PPS-MOEA) is tested through a variety of standard test functions taken from the literature; its performance is compared with six noted multi-objective algorithms. The computational experience gained from the first two experiments indicates that the algorithm proposed in this article is extremely competitive when compared with other MOEAs, being able to accurately, reliably and robustly approximate the true Pareto front in almost every tested case. To justify the motivation behind the research of the parallel swarm structure, the computational results of the third experiment confirm the PPS-MOEA's merit in solving really high-dimensional multi-objective optimization problems.  相似文献   

2.
Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)—the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets.  相似文献   

3.
Reservoir flood control operation (RFCO) is a challenging optimization problem with interdependent decision variables and multiple conflicting criteria. By considering safety both upstream and downstream of the dam, a multi-objective optimization model is built for RFCO. To solve this problem, a multi-objective optimizer, the multi-objective evolutionary algorithm based on decomposition–differential evolution (MOEA/D-DE), is developed by introducing a differential evolution-inspired recombination into the algorithmic framework of the decomposition-based multi-objective optimization algorithm, which has been proven to be effective for solving complex multi-objective optimization problems. Experimental results on four typical floods at the Ankang reservoir illustrated that the suggested algorithm outperforms or performs as well as the comparison algorithms. It can significantly reduce the flood peak and also guarantee the dam’s safety.  相似文献   

4.
5.
B. Y. Qu 《工程优选》2013,45(4):403-416
Different constraint handling techniques have been used with multi-objective evolutionary algorithms (MOEA) to solve constrained multi-objective optimization problems. It is impossible for a single constraint handling technique to outperform all other constraint handling techniques always on every problem irrespective of the exhaustiveness of the parameter tuning. To overcome this selection problem, an ensemble of constraint handling methods (ECHM) is used to tackle constrained multi-objective optimization problems. The ECHM is integrated with a multi-objective differential evolution (MODE) algorithm. The performance is compared between the ECHM and the same single constraint handling methods using the same MODE (using codes available from http://www3.ntu.edu.sg/home/EPNSugan/index.htm). The results show that ECHM overall outperforms the single constraint handling methods.  相似文献   

6.
Most real-world optimization problems involve the optimization task of more than a single objective function and, therefore, require a great amount of computational effort as the solution procedure is designed to anchor multiple compromised optimal solutions. Abundant multi-objective evolutionary algorithms (MOEAs) for multi-objective optimization have appeared in the literature over the past two decades. In this article, a new proposal by means of particle swarm optimization is addressed for solving multi-objective optimization problems. The proposed algorithm is constructed based on the concept of Pareto dominance, taking both the diversified search and empirical movement strategies into account. The proposed particle swarm MOEA with these two strategies is thus dubbed the empirical-movement diversified-search multi-objective particle swarm optimizer (EMDS-MOPSO). Its performance is assessed in terms of a suite of standard benchmark functions taken from the literature and compared to other four state-of-the-art MOEAs. The computational results demonstrate that the proposed algorithm shows great promise in solving multi-objective optimization problems.  相似文献   

7.
This article deals with improving and evaluating the performance of two evolutionary algorithm approaches for automated engineering design optimization. Here a marine propeller design with constraints on cavitation nuisance is the intended application. For this purpose, the particle swarm optimization (PSO) algorithm is adapted for multi-objective optimization and constraint handling for use in propeller design. Three PSO algorithms are developed and tested for the optimization of four commercial propeller designs for different ship types. The results are evaluated by interrogating the generation medians and the Pareto front development. The same propellers are also optimized utilizing the well established NSGA-II genetic algorithm to provide benchmark results. The authors' PSO algorithms deliver comparable results to NSGA-II, but converge earlier and enhance the solution in terms of constraints violation.  相似文献   

8.
A parallel asynchronous evolutionary algorithm controlled by strongly interacting demes for single- and multi-objective optimization problems is proposed. It is suitable even for non-homogeneous, multiprocessor systems, ensuring maximum exploitation of the available processors. The search algorithm utilizes a structured topology of evaluation agents organized in a number of inter-communicating demes arranged on a 2D supporting mesh. Once an evaluation terminates and a processor becomes idle, a series of intra- and inter-deme processes determines the next agent to undergo evaluation on this specific processor. Real coding and differential evolution operators are used. Mathematical and aerodynamic-turbomachinery optimization problems are presented to assess the proposed method in terms of CPU cost, parallel efficiency and quality of solutions obtained within a predefined number of evaluations. Comparisons with conventional evolutionary algorithms, parallelized based on the master–slave model on the same computational platform, are presented.  相似文献   

9.
This paper deals with a problem of partial flexible job shop with the objective of minimising makespan and minimising total operation costs. This problem is a kind of flexible job shop problem that is known to be NP-hard. Hence four multi-objective, Pareto-based, meta-heuristic optimisation methods, namely non-dominated sorting genetic algorithm (NSGA-II), non-dominated ranked genetic algorithm (NRGA), multi-objective genetic algorithm (MOGA) and Pareto archive evolutionary strategy (PAES) are proposed to solve the problem with the aim of finding approximations of optimal Pareto front. A new solution representation is introduced with the aim of solving the addressed problem. For the purpose of performance evaluation of our proposed algorithms, we generate some instances and use some benchmarks which have been applied in the literature. Also a comprehensive computational and statistical analysis is conducted in order to analyse the performance of the applied algorithms in five metrics including non-dominated solution, diversification, mean ideal distance, quality metric and data envelopment analysis are presented. Data envelopment analysis is a well-known method for efficiently evaluating the effectiveness of multi-criteria decision making. In this study we proposed this method of assessment of the non-dominated solutions. The results indicate that in general NRGA and PAES have had a better performance in comparison with the other two algorithms.  相似文献   

10.
Global container repositioning in liner shipping has always been a challenging problem in container transportation as the global market in maritime logistics is complex and competitive. Supply and demand are dynamic under the ever changing trade imbalance. A useful computation optimization tool to assist shipping liners on decision making and planning to reposition large quantities of empty containers from surplus countries to deficit regions in a cost effective manner is crucial. A novel immunity-based evolutionary algorithm known as immunity-based evolutionary algorithm (IMEA) is developed to solve the multi-objective container repositioning problems in this research. The algorithm adopts the clonal selection and immune suppression theories to attain the Pareto optimal front. The proposed algorithm was verified with benchmarking functions and compared with four optimization algorithms to assess its diversity and spread. The developed algorithm provides a useful means to solve the problem and assist shipping liners in the global container transportation operations in an optimized and cost effective manner.  相似文献   

11.
The aim of this work is to propose and validate a novel multi-objective optimization algorithm based on the emulation of the behaviour of the immune system. The rationale of this work is that the artificial immune system has, in its elementary structure, the main features required by other multi-objective evolutionary algorithms described in the literature, such as diversity preservation, memory, adaptivity, and elitism. The proposed approach is compared with three multi-objective evolutionary algorithms that are representative of the state of the art in multi-objective optimization. Algorithms are tested on six standard problems (both unconstrained and constrained) and comparisons are carried out using three different metrics. Results show that the proposed approach has very good performances and can become a valid alternative to standard algorithms for solving multi-objective optimization problems.  相似文献   

12.
Constrained multi-objective optimization problems (cMOPs) are complex because the optimizer should balance not only between exploration and exploitation, but also between feasibility and optimality. This article suggests a parameter-free constraint handling approach called constrained non-dominated sorting (CNS). In CNS, each solution in a population is assigned a constrained non-dominated rank based on its constraint violation degree and Pareto rank. An improved hybrid multi-objective optimization algorithm called cMOEA/H for solving cMOPs is proposed. Additionally, a dynamic resource allocation mechanism is adopted by cMOEA/H to spare more computational efforts for those relatively hard sub-problems. cMOEA/H is first compared with the baseline algorithm using an existing constraint handling mechanism, verifying the advantages of the proposed constraint handling mechanism. Then cMOEA/H is compared with some classic constrained multi-objective optimizers, experimental results indicating that cMOEA/H could be a competitive alternative for solving cMOPs. Finally, the characteristics of cMOEA/H are studied.  相似文献   

13.
In this paper a new graph-based evolutionary algorithm, gM-PAES, is proposed in order to solve the complex problem of truss layout multi-objective optimization. In this algorithm a graph-based genotype is employed as a modified version of Memetic Pareto Archive Evolution Strategy (M-PAES), a well-known hybrid multi-objective optimization algorithm, and consequently, new graph-based crossover and mutation operators perform as the solution generation tools in this algorithm. The genetic operators are designed in a way that helps the multi-objective optimizer to cover all parts of the true Pareto front in this specific problem. In the optimization process of the proposed algorithm, the local search part of gM-PAES is controlled adaptively in order to reduce the required computational effort and enhance its performance. In the last part of the paper, four numeric examples are presented to demonstrate the performance of the proposed algorithm. Results show that the proposed algorithm has great ability in producing a set of solutions which cover all parts of the true Pareto front.  相似文献   

14.
An optimal feeding profile for a fed-batch process was designed based on an evolutionary algorithm. Usually the presence of multiple objectives in a problem leads to a set of optimal solutions, commonly known as Pareto-optimal solutions. Evolutionary algorithms are well suited for deriving multi-objective optimisation since they evolve a set of non-dominated solutions distributed along the Pareto front. Several evolutionary multi-objective optimisation algorithms have been developed, among which the Non-dominated Sorting Genetic Algorithm NSGA-II is recognised to be very effective in overcoming a variety of problems. To demonstrate the applicability of this technique, an optimal control problem from the literature was solved using several methods considering the single-objective dynamic optimisation problem.  相似文献   

15.
针对粒子群优化算法容易陷入局部最优的问题,提出了一种基于粒子群优化与分解聚类方法相结合的多目标优化算法。算法基于参考向量分解的方法,通过聚类优选粒子策略来更新全局最优解。首先,通过每条均匀分布的参考向量对粒子进行聚类操作,来促进粒子的多样性。从每个聚类中选择一个具有最小聚合函数适应度值的粒子,以平衡收敛性和多样性。动态更新全局最优解和个体最优解,引导种群均匀分布在帕累托前沿附近。通过仿真实验,与4种粒子群多目标优化算法进行对比。实验结果表明,提出的算法在27个选定的基准测试问题中获得了20个反世代距离(IGD)最优值。  相似文献   

16.
This article investigates the use of optimal reference point placement to improve performance of non-dominated sorting genetic algorithm (NSGA). Placement of reference points for many-objective optimization is inspired by wheel and Von Neumann topologies of Particle Swarm Optimization (PSO). Results obtained show that the pattern of reference point placement determines performance efficiency of NSGA. The better-performing wheel topology (called wheel reference point genetic algorithm (wRPGA), is compared to three other many-objective evolutionary algorithms: knee-driven evolutionary algorithm (KnEA), non-dominated sorting genetic algorithm III (NSGAIII) and multi-objective evolutionary algorithm based on dominance and decomposition (MOEAD/D). The selected many-objective benchmark problems are Walking Fish Group 2 (WFG2) and Deb-Thiele-Laumanns-Zitzler 2 (DTLZ2). It is also tested on a 3-objective cost function for a hypothetical model of a stand-alone microgrid. Through the simulations, the wheel configuration performed 88.9% better than the Von Neumann configuration. The wheel topology also achieved better performance with respect to inverted generational distance (IGD) compared to KnEA, NSGAIII and MOEAD/D for 7 out of 15 IEEE Congress on Evolutionary Computation (CEC) 2017 benchmark problems. wRPGA gave a good approximation of the Pareto front for the 3-objective model representing the hypothetical microgrid.  相似文献   

17.
This article presents a novel methodology for dealing with continuous box-constrained multi-objective optimization problems (MOPs). The proposed algorithm adopts a nonlinear simplex search scheme in order to obtain multiple elements of the Pareto optimal set. The search is directed by a well-distributed set of weight vectors, each of which defines a scalarization problem that is solved by deforming a simplex according to the movements described by Nelder and Mead's method. Considering an MOP with n decision variables, the simplex is constructed using n+1 solutions which minimize different scalarization problems defined by n+1 neighbor weight vectors. All solutions found in the search are used to update a set of solutions considered to be the minima for each separate problem. In this way, the proposed algorithm collectively obtains multiple trade-offs among the different conflicting objectives, while maintaining a proper representation of the Pareto optimal front. In this article, it is shown that a well-designed strategy using just mathematical programming techniques can be competitive with respect to the state-of-the-art multi-objective evolutionary algorithms against which it was compared.  相似文献   

18.
Constraint handling is an important aspect of evolutionary constrained optimization. Currently, the mechanism used for constraint handling with evolutionary algorithms mainly assists the selection process, but not the actual search process. In this article, first a genetic algorithm is combined with a class of search methods, known as constraint consensus methods, that assist infeasible individuals to move towards the feasible region. This approach is also integrated with a memetic algorithm. The proposed algorithm is tested and analysed by solving two sets of standard benchmark problems, and the results are compared with other state-of-the-art algorithms. The comparisons show that the proposed algorithm outperforms other similar algorithms. The algorithm has also been applied to solve a practical economic load dispatch problem, where it also shows superior performance over other algorithms.  相似文献   

19.
This article is concerned with the optimal use of metamodels in the context of multi-objective evolutionary algorithms which are based on computationally expensive function evaluations. The goal is to capture Pareto fronts of optimal solutions with the minimum computational cost. In each generation during the evolution, the metamodels act as filters that distinguish the most promising individuals, which will solely undergo exact and costly evaluations. By means of the so-called inexact pre-evaluation phase, based on continuously updated local metamodels, most of the non-promising individuals are put aside without aggravating the overall cost. The gain achieved through this technique is amazing in single-objective problems. However, with more than one objective, noticeable performance degradation occurs. This article scrutinizes the role of metamodels in multi-objective evolutionary algorithms and proposes ways to overcome expected weaknesses and improve their performance. Minimization of mathematical functions as well as aerodynamic shape optimization problems are used for demonstration purposes.  相似文献   

20.
System of systems (SoS) architecting is the process of bringing together and connecting a set of systems so that the collection of the systems, i.e., the SoS is equipped with a set of required capabilities. A system is defined as inflexible in case it contributes to the SoS with all of the capabilities it can provide. On the other hand, a flexible system can collaborate with the SoS architect in the capabilities it will provide. In this study, we formulate and analyze a SoS architecting problem representing a military mission planning problem with inflexible and flexible systems as a multi-objective mixed-integer-linear optimization model. We discuss applications of an exact and an evolutionary method for generating and approximating the Pareto front of this model, respectively. Furthermore, we propose a decomposition approach, which decomposes the problem into smaller sub-problems by adding equality constraints, to improve both the exact and the evolutionary methods. Results from a set of numerical studies suggest that the proposed decomposition approach reduces the computational time for generating the exact Pareto front as well as it reduces the computational time for approximating the Pareto front while not resulting in a worse approximated Pareto front. The proposed decomposition approach can be easily used for different problems with different exact and heuristic methods and thus is a promising tool to improve the computational time of solving multi-objective combinatorial problems. Furthermore, a sample scenario is presented to illustrate the effects of system flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号