首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nanocomposite films of poly vinylpyrrolidone (PVP) with different amounts viz., 2, 4, 6 and 8?wt% of cesium aluminate (CsAlO2) have been fabricated using solvent casting technique. The effect of nanofiller content on the optical properties of PVP/CsAlO2 nanocomposite films has been established by UV-visible spectroscopy. The UV-visible transmittance studies revealed that the UV light absorbing nature of nanocomposite films with considerable visible transparency. The Fourier Transform Infrared (FTIR) spectral studies visualizes the effect of CsAlO2 nanofiller on the structural behaviors of PVP, while optical studies reveals an obvious change in the electronic band structure leading to a significant reduction in optical band gaps. The scanning electron microscopic (SEM) studies establish the morphological changes in PVP matrix upon doping with CsAlO2. The measured refractive index (RI) depends on the volume fraction of CsAlO2 nanofiller and the result indicates that a substantial increase of RI values from 1.85 to 2.64 at wave length 360 nm. The dielectric studies, optical conductivity measurements and Urbach energy analysis also supports the dopant dependent optical property, tuning of PVP/CsAlO2 nanocomposite films to enable effective material property engineering to suit specified application requirements.  相似文献   

2.
A low loss high-frequency magnetic composite with Y3Fe5O12 (YIG) ultrafine particles embedded in a high-density polyethylene (HDPE) matrix was fabricated by using a simple low-temperature hot-pressing technique. The magnetic and dielectric properties of the as-prepared composites were investigated in detail. The results indicate that as the volume of the ceramic fillers increases, the permittivity, permeability, dielectric and magnetic loss of the composite all increase. The cut-off frequencies of the composites are all above 700 MHz. Since the low resistivity of YIG, the dielectric losses of the composites are high and decrease with frequency in the lower frequency range. Good frequency stability of the permittivities and permeabilities, and low dielectric and magnetic losses within the measurement range have been observed.  相似文献   

3.
The dihexyl substituted poly (3,4-propylenedioxythiophene) (PProDOT-Hx2) thin films uniformly deposited by cost effective spray coating technique on transparent conducting oxide coated substrates. The electro-optical properties of PProDOT-Hx2 films were studied by UV-Vis spectroscopy that shows the color contrast about 45% with coloration efficiency of ~ 185 cm2/C. The electrochemical properties of PProDOT-Hx2 films were studied by cyclic voltammetry and AC impedance techniques. The cyclic voltammogram shows that redox reaction of films are diffusion controlled and ions transportation will be faster on the polymer film at higher scan rate. Impedance spectra indicate that polymer films are showing interface charge transfer process as well as capacitive behavior between the electrode and electrolyte. The XRD of the PProDOT-Hx2 thin films revealed that the films are in amorphous nature, which accelerates the transportation of ions during redox process.  相似文献   

4.
Solid polymer electrolyte (SPE) of polyvinylpyrrolidone (PVP) with varying amounts, namely, 5, 10, and 15?wt% of lithium perchlorate (LiClO4) as an electrolyte and 8?wt% cesium aluminum oxide (CsAlO2) nanoparticle have been fabricated by solution intercalation technique. The optoelectrical behaviors of the SPE films have been evaluated using UV–visible spectroscopy. The UV–visible spectral studies revealed the UV light-absorbing nature of NC films with considerable visible transparency. The chemical structure and morphological behaviors of PVP/8?wt% of CsAlO2–LiClO4 SPE films have been established by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy, respectively. The AC conductivity of the SPEs was evaluated at room temperature by digital LCR meter in the frequency range 100 Hz–5?MHz. The thermal behaviors such as Tg and degradation patterns of the SPEs have been evaluated using differential scanning calorimetric analysis and thermogravimetric analysis, respectively.  相似文献   

5.
A sodium ion conducting polymer electrolyte based on Poly (Vinyl Alcohol) (PVA) complexed with Sodium Iodide (NaI) was prepared using solution cast technique. The structural properties of composite PVA polymer electrolyte films were examined by XRD. The XRD results revealed that the amorphous domains of PVA polymer matrix increased in size with the increase of NaI salt concentration. The variation in film morphology was examined by scanning electron microscopy. FT-IR spectra studies for pure PVA and complexed films revealed the vibrational changes that occurred due to the effect of dopant salt in the polymer. DC conductivity was measured in the temperature range of 303–373° K and the conductivity was found to increase with the increase of dopant concentration as well as temperature. Optical absorption studies were made in the wavelength range 200–600 nm. The absorption edge, direct band gap, and indirect band gap values were evaluated.  相似文献   

6.
Galinobisuitite thin films of (Bi2S3)(PbS) were prepared using the chemical bath deposition technique (CBD). Thin films were prepared by a modified chemical deposition process by allowing the triethanolamine (TEA) complex of Bi3+ and Pb2+ to react with S2− ions, which are released slowly by the dissociation of the thiourea (TU) solution. The films are polycrystalline and the average crystallite size is 35 nm. The composition of the films was measured using the atomic absorption spectroscopy (AAS) technique. The films are very adherent to the substrates. The crystal structure of Galinobisuitite thin films was calculated by using the X-ray diffraction (XRD) technique. The surface morphology and roughness of the films were studied using scanning electron microscopes (SEM), transmission electron microscopes (TEM) and stylus profilers respectively. The optical band gaps of the films were estimated from optical measurements.  相似文献   

7.
Yb doped (Y0.97Zr0.03)2O3 transparent ceramics were fabricated by solid state reaction and vacuum sintering. The microstructure, thermal and mechanical properties of Y2O3 ceramic, as well as the effect of Yb doping concentration on these properties were investigated in detail. The lattice parameter and unit cell volume decrease with the increasing of Yb content, whereas thermal expansive coefficient increases. With Yb content increasing from 0 to 8 at.%, the mean grain size increases from 15.82 μm to 26.54 μm, and the thermal conductivity at room temperature (RT) decreases from 11.97 to 6.39 W/m/K. The microhardness decreases with Yb content, and the microhardness and fracture toughness of (Y0.97Zr0.03)2O3 transparent ceramic is 11.11 GPa and 1.29 MPa m1/2, respectively.  相似文献   

8.
In this work, two materials for secondary lithium battery cathodes formed by polyaniline-V2O5 and sulfonated polyaniline-V2O5, which have a higher charge capacity than the V2O5 xerogel, were synthesized. X-ray absorption and Fourier transform infrared spectroscopies were employed to analyze the short-range interactions in these materials. Based on these experiments, it was possible to observe significant differences in the symmetry of the VO5 units, and this was attributed to the intimate contact between V2O5 and the polymers, and to some flexibility of the VO5 square pyramids due to the low range order of the nanocomposites.  相似文献   

9.
Polyvinyl alcohol/potassium chromate (K2CrO4) composite films were prepared by solution casting technique using distilled water as a solvent, and were further investigated using Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, X-ray diffraction, thermogravimetric analysis, optical microscopy, scanning electron microscopy, and dielectric measurements. Microscopic studies reveal that K2CrO4 was homogenously mixed with polyvinyl alcohol matrix due to interfacial interaction between polyvinyl alcohol and K2CrO4. The composite films showed very high dielectric constant and relatively low dielectric loss. Hence, such composite materials with improved dielectric properties could be useful for fabrication of electrical charge storage device.  相似文献   

10.
S?awomir Ku? 《Fuel》2003,82(11):1331-1338
The catalytic performance in oxidative coupling of methane (OCM) of unmodified pure La2O3, Nd2O3, ZrO2 and Nb2O5 has been investigated under various conditions. The results confirmed that the activity of La2O3 and Nd2O3 was always much higher than that of the remaining two. The surface basicity/base strength distribution of pure La2O3, Nd2O3, ZrO2 and Nb2O5 was measured using a test reaction of transformation of 2-butanol and a temperature-programmed desorption of CO2. Both methods showed that La2O3 and Nd2O3 had high basicity and contained medium and strong basic sites (lanthanum oxide more and neodymium oxide somewhat less). ZrO2 had only negligible amount of weak basic sites and Nb2O5 was rather acidic. The confrontation of the basicity and catalytic performance indicated that in the case of investigated oxides, the basicity (especially strong basic sites) could be a decisive factor in determination of the catalytic activity in OCM. Only in the case of ZrO2 it was observed a moderate catalytic performance in spite of negligible basicity. The influence of a gas atmosphere used in the calcination of oxides (flowing oxygen, helium and nitrogen) on their basicity and catalytic activity in OCM had been also investigated. Contrary to earlier observations with MgO, no effect of calcination atmosphere on the catalytic performance of investigated oxides in OCM and on their basicity was observed.  相似文献   

11.
The paper reports synthesis of Sr0.5Ba0.5Nb2O6 (SBN) and Co1.2−xMnxFe1.8O4 (CMFO) via ceramic and hydroxide co-precipitation routes respectively. The nanopowders of SBN-CMFO0.1 (MSBN0.1) and SBN-CMFO0.3 (MSBN0.3) are compacted to form the desired magnetoelectric (ME)/magnetodielectric (MD) composites. The Bi2O3 is used as a sintering aid. The Bi2O3 at three weight percent is observed to cause agglomeration of SBN and CMFO particles and improve the magneto-mechanical coupling. The composites are investigated for their ferroelectric, ferromagnetic, dielectric, magnetoelectric (ME) and magnetodielectric (MD) properties. The results on the magnetocapacitance (Mc) are observed interesting and could be correctly understood in terms of the stress induced variation in the dielectric constant. The MC is observed to remain fairly constant between 10 to 500 kHz and possess a useful magnitude of Mc nearly 4%.  相似文献   

12.
In this present investigation, for increasing compatibility between nanoparticles and polymer matrix as well as preventing of aggregation, surface modification of aluminum oxide nanoparticles was performed with citric acid (CA) and ascorbic acid as biosafe and environmentally friendly modifier agents. For fabrication of nanocomposites, different contents (3, 5, 7?wt%) of nanoparticles were incorporated into the poly(vinyl pyrrolidone) matrix by ultrasonication technique. Transmission electron microscopy images of nanocomposites show a good dispersion of nanoparticles into the polymer matrix. Thermogravimetric analysis results show that the thermal stability of the nanocomposites shifted to higher temperature in comparison with the neat polymer matrix.  相似文献   

13.
14.
The paper reports the use of La2O3 and ZrO2 co-doping as a composite sintering aid for the fabrication of Tm:Y2O3 transparent ceramics. Two groups of experiments were conducted for investigating the influences of composite sintering aids on the microstructures and the optical properties of Tm:Y2O3 transparent ceramics in contrast to single La3+ and single Zr4+ doped Tm:Y2O3. Samples with composite sintering aids could realize fine microstructures and good optical properties at relatively low sintering temperatures. Grain sizes around 10 μm and transmittances close to theoretical value at wavelength of 2 μm were achieved for the 9 at.% La3+, 3 at.% Zr4+ co-doped samples sintered at 1500-1600 °C. The influences of the composite sintering aids on the emission intensities and the phonon energies of Tm:Y2O3 ceramics were also investigated.  相似文献   

15.
Al-doped Li4Ti5O12 in the form of Li4−xAlxTi5O12 (x = 0, 0.05, 0.1 and 0.2) was synthesized via solid state reaction in an Ar-flowing atmosphere. Al-doping does not change the phase composition and particle morphology, but easily results in the lattice distortion and thus the poor crystallinity of Li4Ti5O12. Al-doping decreases the specific capacity of Li4Ti5O12, while improves remarkably its cycling stability at high charge/discharge rate. The substitution of Al for Li site can enhance the electronic conductivity of Li4Ti5O12 via the generation of mixing Ti4+/Ti3+, whereas impede the Li-ion diffusion in the lattice. Excessive Al causes large electrode polarization due to the lower Li-ion conductivity, and thus leads to low specific capacity at high current densities. Li3.9Al0.1Ti5O12 exhibits a relatively high specific capacity and an excellent cycling stability.  相似文献   

16.
N Sharma 《Electrochimica acta》2004,49(7):1035-1043
The electrochemical performance of mixed oxides, Ca2Fe2O5 and Ca2Co2O5 for use in Li-ion batteries was studied with Li as the counter electrode. The compounds were prepared and characterized by X-ray diffraction and SEM. Ca2Fe2O5 showed a reversible capacity of 226 mAh/g at the 14th cycle and retained 183 mAh/g at the end of 50 cycles at 60 mA/g in the voltage window 0.005-2.5 V. A reversible capacity in the range, 365-380 mAh/g, which is stable up to 50 charge-discharge cycles is exhibited by Ca2Co2O5 in the voltage window, 0.005-3.0 V and at 60 mA/g. This corresponds to recycleable moles of Li of 3.9±0.1 (theoretical: 4.0). Significant improvement in the cycling performance and attainable reversible capacity were noted for Ca2Co2O5 on cycling to an upper cut-off voltage of 3.0 V as compared to 2.5 V. Coulombic efficiency for both compounds is >98%. Electrochemical impedance spectroscopy (EIS) data clearly indicate the reversible formation/decomposition of polymeric surface film on the electrode surface of Ca2Co2O5 in the voltage window, 0.005-3.0 V. Cyclic voltammetry results compliment the galvanostatic cycling data.  相似文献   

17.
Composite ceramics based on (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12-0.16, y = 0-8) were prepared by a conventional mixed-oxide route. Zn2+ partially replaced Mg2+ in Mg2TiO4 and formed the spinel-structured (Mg1−δZnδ)2TiO4 phase. Nb2+, is known to be solid soluble in CaTiO3, was found to change its shape from cubic to pliable. A bi-phase system (Mg1−δZnδ)2TiO4 and CaTiO3 exhibited in all samples, where a small amount of second phase Mg1−δZnδTiO3 was also detected. The microwave dielectric properties of specimens were strongly related to ZnNb2O6 and CaTiO3 content. As y increased, ?r and τf decreased, however, Q × f decreased to a minimum value and started to increase thereafter. It was also found that ?r and τf increased and Q × f decreased with increasing x. The optimized microwave dielectric properties with ?r = 18.37, Q × f = 31,027 GHz (at 6 GHz), and τf = 0.51 ppm/°C were achieved for (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12, y = 4) sintered at 1360 °C for 6 h.  相似文献   

18.
采用柠檬酸盐法制备了Ba_(0.6)Sr_(0.4)TiO_3粉体,通过丝网印刷法制备了Ba_(0.6)Sr_(0.4)TiO_3厚膜,研究了在空气气氛中进行热处理前后厚膜样品的介电性能。研究结果表明,在空气气氛中进行热处理可以有效地提高厚膜样品的介电性能。经过1000°C热处理,厚膜样品在10 kH z下的介电损耗由1.7%降为1.1%,其优质系数由33提高到55。  相似文献   

19.
Bismuth oxide in δ-phase is a well-known high oxygen ion conductor and can be used as an electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). 5-10 mol% Ta2O5 are doped into Bi2O3 to stabilize δ-phase by solid state reaction process. One Bi2O3 sample (7.5TSB) was stabilized by 7.5 mol% Ta2O5 and exhibited single phase δ-Bi2O3-like (type I) phase. Thermo-mechanical analyzer (TMA), X-ray diffractometry (XRD), AC impedance and high-resolution transmission electron microscopy (HRTEM) were used to characterize the properties. The results showed that holding at 800-850 °C for 1 h was the appropriate sintering conditions to get dense samples. Obvious conductivity degradation phenomenon was obtained by 1000 h long-term treatment at 650 °C due to the formation of α-Bi2O3 phase and Bi3TaO7, and 〈1 1 1〉 vacancy ordering in Bi3TaO7 structure.  相似文献   

20.
The sintering behaviors and microwave dielectric properties of the 16CaO–9Li2O–12Sm2O3–63TiO2 (abbreviated CLST) ceramics with different amounts of V2O5 addition had been investigated in this paper. The sintering temperature of the CLST ceramic had been efficiently decreased by nearly 100 °C. No secondary phase was observed in the CLST ceramics and complete solid solution of the complex perovskite phase was confirmed. The CLST ceramics with small amounts of V2O5 addition could be well sintered at 1200 °C for 3 h without much degradation in the microwave dielectric properties. Especially, the 0.75 wt.% V2O5-doped ceramics sintered at 1200 °C for 3 h have optimum microwave dielectric properties of Kr = 100.4, Q × f = 5600 GHz, and TCF = 7 ppm/°C. Obviously, V2O5 could be a suitable sintering aid that improves densification and microwave dielectric properties of the CLST ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号