共查询到20条相似文献,搜索用时 0 毫秒
1.
《分离科学与技术》2012,47(11):1616-1626
In this study, a membrane prepared by gelling trihexyl(tetradecyl)phosphonium dicyanamide ionic liquid (IL) with poly(vinylidene fluoride-co-hexafluoropropylene) copolymer is tested for performance and stability in pervaporative separation of 1-butanol. Feed concentration and temperature affected separation performance mainly through plasticizing and swelling effects in the membrane which promoted liquid-like transport behavior. Microscale IL-in-polymer networks formed within the gel matrix where the neat IL possibly functioned as conventional liquid membrane. IL gelling has significantly improved the membrane operational lifetime to ~80 h, a significant improvement on the ~10 h shown by a simple supported IL membrane counterpart. The instability was consequent to polymer-IL incompatibility and so further investigations are underway to resolve this issue. 相似文献
2.
《分离科学与技术》2012,47(17):2531-2539
ZIF-8-filled polydimethylsiloxane (PDMS) membranes, PDMS/ZIF-8, were prepared by a two-step polymerization process and were used to recover n-butanol from an aqueous solution by pervaporation (PV). Compared with pure PDMS membrane, PDMS/ZIF-8 membranes demonstrated an obviously higher n-butanol permselectivity. As an increase of ZIF-8 content, n-butanol/water selectivity increased initially and then decreased, while the n-butanol and water permeability decreased monotonously. PDMS/ZIF-8 membrane containing 2 wt% ZIF-8, that is, PDMS/ZIF-8-2 showed the highest selectivity. On the other hand, selectivity and permeability for n-butanol and water of PDMS/ZIF-8-2 membrane decreased with the increase of operating temperature. The selectivity and permeability for n-butanol reached 7.1 and 3.28 × 105 barrer, respectively, at 30°C when the feed concentration of n-butanol was 0.96 wt%. 相似文献
3.
《分离科学与技术》2012,47(12):2894-2914
Abstract In order to simultaneously achieve both high permselectivity and permeability (flux) for the recovery of aromatic compounds such as phenol from aqueous streams, a composite organophilic hollow fiber based pervaporation process using PDMS/PEBA as two-layer membranes has been developed. The process employed a hydrophobic microporous polypropylene hollow fiber, having thin layers of silicones (PDMS) and PEBA polymers coating on the inside diameter. The composite membrane module is used to investigate the pervaporation behavior of phenol in water in a separate study; and that of a mixture of phenol, methanol, and formaldehyde in an aqueous stream (a typical constituent of wastewater stream of phenol-formaldehyde resin manufacturing process) in another study. The fluxes of phenol and water increase relatively linearly with increasing concentration especially at low feed concentration, and exhibit a near plateau with further increase in concentration. As a result, the phenol/water separation factor decreases as the feed concentration increases. Significant improvement in phenol/water separation factor and phenol flux is achieved for this two-layer (PDMS/PEBA) membranes as compared to that achieved using only PDMS membrane. The phenol and water fluxes and the separation factor are highly sensitive to permeate pressure as all decrease sharply with increase in permeate pressure. For this membrane, an increase in temperature increases the separation factor, and also permeation fluxes of phenol and water. An increase in feed-solution velocity does not have a significant effect on phenol and water fluxes, and also on the separation factor at least within the range of the feed-solution velocity considered. In the study of pervaporation behavior of a typical constituent of wastewater stream of phenol-formaldehyde resin manufacturing process, phenol permeation shows a much higher flux and a higher increase in flux with increase in concentration is also exhibited as compared to that exhibited by methanol permeation. This thus indicates that the membrane is more permeable to phenol than to methanol and formaldehyde. 相似文献
4.
交联壳聚糖膜对各种醇水体系分离特性的研究 总被引:2,自引:0,他引:2
壳聚糖(CS)膜对不同醇水混合物的分离性能与醇分子的体积相关,随醇分子体积的增加,膜的分离因子增加,而渗透通量下降。然而经戊二醛交联后的CS膜,在分离丙醇水体系时不但具有高的分离因子,还具有比乙醇水体系同的渗透通量。本文研究了在分离不同醇水体系时交联剂量对交联CS膜分离性能的影响,并就交联前后CS膜对醇水体系的分离性能发生变化的原因进行了探讨。 相似文献
5.
6.
研究了聚乙烯醇(PVA)/聚酰胺(PA)复合膜渗透汽化(PV)分离异丙醇(IPA)/水混合物时运行工艺的影响,模拟了渗透通量(J)预测方程。结果表明,PVA/PA复合膜在料液中w(IPA)%在0~95%范围内或在25℃~100℃的操作温度范围获得的渗透液中IPA含量[w′(IPA)]都小于1%,J随料液中w(IPA)%的下降或操作温度的提高而增加。分离性能预测方程的拟合结果与试验数据有良好一致性。在室温条件下,经过90 d的间歇运行或经过120 d的长期贮存后,PVA/PA复合膜的分离性能稳定,在IPA/水混合物的共沸温度80.4℃运行时的J为73.1 g/m^2·h,渗透液中的水含量[w′(H2O)]都大于99.5%,展示了其在食品、生物、制药和化学等工业中将具有良好的应用前景。 相似文献
7.
8.
硅橡胶膜生物反应器在苹果原汁发酵过程中的膜分离性能 总被引:1,自引:0,他引:1
利用硅橡胶膜生物反应器进行了苹果原汁发酵-渗透汽化分离实验,研究了苹果发酵液中的主要风味成分及其渗透汽化分离性能。发酵液中的主要芳香成分与传统苹果酒接近,但酯类物质的含量较低。硅橡胶膜对发酵液中的挥发性轻组分表现出良好的选择透过性,高级醇、酯类和醛类的分离率分别达到90%、76%和67%;而乳酸乙酯、β-苯乙醇和乙酸被不同程度地截留。非挥发性有机酸被截留在膜上游发酵液中。草酸、乙酸、柠檬酸和琥珀酸得到不同程度地浓缩;苹果酸、酒石酸和乳酸在分离过程中可能被微生物细胞所消耗,其含量有所降低。硅橡胶复合膜在选择性地分离挥发性轻组分的同时有效地保护了发酵液中的有机酸等非挥发性营养成分,研究结果进一步证明了采用硅橡胶膜生物反应器同时生产苹果白兰地和果汁发酵饮料的可行性。 相似文献
9.
《分离科学与技术》2012,47(10):1604-1612
10.
《分离科学与技术》2012,47(12):1709-1714
Lignocellulosic biomass has potential as an alternative to corn as starting material for the production of ethanol for the development of non-fossil fuel energy sources. In this case, low concentration bioethanol is gained by yeast fermentation and it has to be efficiently recovered and concentrated. For this purpose pervaporation separation of dilute alcohol-aqueous solutions was carried out using a poly(octhylmethyl siloxane) [POMS] membrane. The effect of different process parameters (feed composition, feed temperature, feed flow rate, permeate pressure) on pervaporation performance were investigated and discussed in terms of the separation factor and the total flux. The membrane studied was ethanol to water selective at ethanol feed concentrations lower than 2.5% w/w, while the highest permeability was achieved at feed temperature of 95°C. 相似文献
11.
《分离科学与技术》2012,47(17):2708-2716
The pervaporation properties of a methylated-silica membrane were studied on binary ethanol/water and ternary ethanol/water/methanol mixtures. The aim was to acquire a better understanding of the pervaporation mechanisms by studying the effects of feed temperature, permeate pressure, and feed composition on molecular transport. Emphasis was placed on the role of competitive adsorption and dragging and blocking effects between the components in the context of the adsorption-diffusion model. The results show the potential of the membrane for the coupled removal of water and methanol from bioethanol. This attractive application for process intensification was suggested for the first time in this paper. 相似文献
12.
《分离科学与技术》2012,47(7):1083-1092
Polybutadiene rubber was used for stabilization of the emulsion for removal of phenol from aqueous solution via emulsion liquid membrane technique. The results showed that the addition of the polymer increased the stability of the emulsion, considerably. The effect of various parameters such as polymer concentration, temperature, mixing intensity, internal phase concentration, phases ratio, and pH of feed phase was studied. It was found that by increasing the volume ratio of emulsion to feed, internal phase concentration, and decreasing pH, the extraction efficiency was increased. Under optimum conditions, an extraction efficiency of 92% was obtained within only 35 minutes. 相似文献
13.
14.
15.
膜分离技术研究与应用 总被引:2,自引:0,他引:2
石油化工生产过程中产生的炼油污水,含有多种污染物,对生态环境造成严重污染。膜分离作为一种工艺流程简单,处理效率高以及能耗低的技术,正日益受到广泛的关注。文章介绍了膜分离技术及其研究进展,分析了影响炼油污水处理效果的各种因素以及产生膜污染的主要原因及其处理措施,并展望了膜分离技术的发展趋势。 相似文献
16.
17.
对自制改性聚乙烯醇(PVA)/聚丙烯腈(PAN)共混膜渗透汽化分离异丙醇-水溶液体系的性能进行了研究。分别考察了操作温度、下游表压以及异丙醇浓度对PVA/PAN共混膜渗透蒸发分离性能影响。结果表明,随着操作温度及异丙醇浓度的增大和下游压力的减小,膜的渗透通量增加,分离因子减小。在操作温度298 K、下游表压4k Pa的条件下,采用膜厚为42μm的PVA/PAN共混膜对90%(质量分数)的异丙醇-水体系进行渗透汽化分离,其渗透通量和分离因子分别达到1 940 g·m-2·h-1和22.2。 相似文献
18.
实验对已污染的聚醚砜膜进行了清洗的研究,并通过测量各种清洗剂清洗后膜水通量的恢复,确定适宜的清洗剂、清洗时间、清洗液浓度和操作压力,选择出最佳的清洗方案,取得较好的清洗效果。通过研究表明:被污染的聚醚砜膜用混合清洗剂清洗恢复率可达到85%,效果要明显优于单一的清洗方法。 相似文献
19.
《分离科学与技术》2012,47(3):429-437
Pervaporation and vapor permeation are membrane-based processes proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol, or butanol recovery from fermentation broths, solvent/biofuel dehydration to meet dryness specifications, and organic-organic separations such as the removal of sulfur compounds from gasoline. Unlike membrane filtration processes, which rely on an applied liquid pressure gradient and size sieving to accomplish a separation, pervaporation and vapor permeation separate compounds based on a chemical activity driving force and the sorption and diffusion of the compounds through the membrane. These properties enable the separation of even miscible liquid mixtures. 相似文献