首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用电子束加速器辐射接枝方法对聚丙烯腈(PAN)基碳纤维进行表面改性,研究了接枝单体种类对接枝率及其环氧树脂基复合材料力学性能的影响,分析了辐射接枝前后PAN基碳纤维的表面形貌与化学结构以及其复合材料界面断口的形貌变化。结果表明:电子束辐射接枝改性的PAN基碳纤维表面粗糙度增加,表面活性官能团增多,与树脂的机械锲合作用增强,其树脂基复合材料断口表而较为平整;乙二胺/水溶液体系是辐射接枝改性的理想溶液,在200 kGy的电子束辐射下,PAN基碳纤维表面的接枝率为6.66%,复合材料的层间剪切强度提高了45.1%。  相似文献   

2.
以斜纹3k T300碳纤维布、环氧树脂和0.3~0.5 mm短切碳纤维为主要实验原料,使用短切纤维铺放装置将短切碳纤维定量铺放在碳纤维布表面,并铺层得到5块层间短切纤维增强的预制体,每块预制体含8层碳纤维布且每块预制体层间短切碳纤维铺放面密度分别为5,10,20,30,40 g/m2,并增设一块层数为8层、层间不含短切纤维增强的预制体作为对照组。采用真空辅助树脂灌注成型方式浸渍预制体后高温固化,得到层间含不同面密度短切纤维的碳纤维复合材料层合板,研究了不同面密度短切纤维含量对碳纤维复合材料层合板拉伸、弯曲以及层间剪切强度的影响。研究结果表明,当短切碳纤维铺放面密度为5 g/m2时,复合材料层板的拉伸、弯曲强度最好,在5~40 g/m2范围内,复合材料层板的层间剪切强度随短切碳纤维铺放面密度的增大而增大。  相似文献   

3.
PAN基碳纤维阳极电解氧化表面处理的研究   总被引:3,自引:1,他引:3  
借助XPS、力学分析、SEM扫描电镜、傅立叶红外光谱 ,较系统地考察了碳纤维表面组成与结构的变化及阳极氧化表面处理对碳纤维复合材料层间剪切强度的作用与影响。结果表明 :采用碳酸氢铵为电解质对碳纤维进行阳极电解氧化表面处理后 ,其复合材料的层间剪切断裂转变为以张力断裂形式为主 ;通过适当地增加碳纤维表面的羟基含量 ,提高活性碳原子数与非活性碳原子数比 ,可有效地改善碳纤维复合材料的使用性能 ,使碳纤维层间剪切强度提高 49% ,层间剪切强度达 85 .5MPa。  相似文献   

4.
In this article, based on the surface chemical treatment of carbon fiber, a clay coating process was developed for the surface modification of the carbon fiber to obtain a controlled interface between carbon fiber and polyetherimide (PEI) matrix in the composites system. SEM, XPS spectrum and contact angle measure reveal that the clay coating can improve the surface roughness of the carbon fiber surface for a favorable wettability with the matrix, which can also improve the interfacial adhesion of the composites. Experimental results show that the interlaminar shear strength (ILSS) and the three-point bending (TPB) of the composites reinforced by the carbon fiber coated with the clay have been enhanced.  相似文献   

5.
Graphene oxide (GO) was used to modify the surface of carbon fiber layers through electrophoretic deposition, forming a multiscale reinforcement fabric. By adjusting the experimental parameters, the resulting GO‐carbon fabric showed productive and homogenous distribution of thin and less‐agglomerate GO platelets on carbon fiber surface, remarkably enlarging the surface area and roughness of carbon fabric. To investigate the effect of GO sheets on composites, GO‐carbon fabric and carbon fabric‐reinforced hierarchical epoxy resin composites were respectively manufactured. Mechanical tests demonstrated that after introducing GO flakes on carbon fabric, both the flexural strength and interlaminar shear strength of composite had achieved an increase, especially the interlaminar shear strength rising by 34%. Through fractography analysis, it was found that in pure carbon fabric‐reinforced epoxy composite, the fiber/matrix debonding fracture mechanism predominated, while after the GO decoration on carbon fiber surface, the composite featured a stronger interfacial bonding, leading to the enhancement in mechanical properties of hierarchical epoxy resin composite. POLYM. COMPOS., 37:1515–1522, 2016. © 2014 Society of Plastics Engineers  相似文献   

6.
PAN基高模碳纤维阳极氧化的表面处理   总被引:3,自引:0,他引:3  
采用阳极氧化法对PAN基高模碳纤维进行连续表面处理,重点研究了氧化电流密度对碳纤维宏观力学性能、表面形貌、表面酸性官能团以及碳纤维增强树脂基复合材料(CFRP)层间剪切强度(ILSS)的影响。结果表明,电流密度对纤维力学性能、表面形貌影响不大;氧化后纤维表面总的酸性官能团显著提高,最大增幅达13倍左右;适当的处理条件可使CFRP的ILSS从28.4 MPa提高到80 MPa以上。  相似文献   

7.
采用二氧化碳超临界(scCO2)处理碳纤维(CF)表面的方法,研究了粗糙度对碳纤维/聚芳基乙炔(PAA)树脂复合材料界面性能的影响.处理前后的碳纤维通过XPS,AFM和表面能测量进行了表征.CF/PAA复合材料的界面力学性能通过层间剪切强度测试(ILSS)与断口形貌分析进行了评价.结果表明,scCO2处理前后碳纤维表面的化学组成基本上没有变化.随着碳纤维表面粗糙度的增加,CF/PAA复合材料的界面力学性能先增加后减小.其中粗糙度范围为30~45 nm的样品有最高的ILSS值,43.36MPa,比未处理的样品提高了44%.对复合材料的ILSS提高起主要作用的因素是碳纤维与PAA树脂的界面齿合作用.而齿合作用程度的不同主要是由于不同粗糙度而引起的碳纤维表面物理状态的不同.  相似文献   

8.
《Ceramics International》2018,44(10):11448-11455
In order to improve the interlaminar shearing strength of carbon fiber/pyrolytic carbon (Cf/PyC) composites, SiC nanowires (SiCNWs) growing at different positions were introduced into carbon fiber/pyrolytic carbon composites to generate carbon fiber-SiC nanowire/pyrolytic carbon (Cf-SiCNWs/PyC) composites. Cf-SiCNWs/PyC composites were prepared by sol-gel and isothermal chemical vapor infiltration (ICVI) method. The morphology, microstructure and compositions of composites were investigated by SEM, TEM, XRD and XPS. The interlaminar shearing strength was tested and the effect of SiCNWs growth positions on the interlaminar shearing strength was investigated. The results showed that SiCNWs were consisted of perfect single crystalline structure of β-SiC with diameter of 160–200 nm. The SiCNWs could grow at four kinds of positions to combine with carbon fibers to form multi-scaled reinforcements (micro-scaled carbon fibers and nanoscaled SiCNWs). The interlaminar shear strength of Cf-SiCNWs/PyC composites were increased by 78% compared with Cf/PyC composites without SiCNWs. The improvement of interlaminar shear strength was attributed to bridging and pull-out of multi-scaled reinforcements composed of carbon fibers and SiCNWs as well as the enhancement of fiber/matrix interface bonding generated by SiCNWs growing at different positions.  相似文献   

9.
臭氧处理对碳纤维表面及其复合材料性能的影响   总被引:6,自引:0,他引:6  
利用X射线光电子能谱(XPS)研究了碳纤维经臭氧(O3)氧化处理后表面元素组成及表面官能团的变化,结果发现,O3表面处理主要增加了碳纤维表面上的羟基或醚基官能团;研究了表面O3氧化处理对复合材料力学性能的影响,结果表明,碳纤维经O3氧化处理后明显改善了碳纤维与环氧树脂间的界面粘结,其复合材料的层间剪切强度明显提高。  相似文献   

10.
用两种环氧树脂上浆剂对国产聚丙烯腈基碳纤维进行上浆,测试和比较了两种环氧树脂上浆剂对聚丙烯腈(PAN)基碳纤维耐磨性、与水接触角、表面能等性能以及拉伸强度、伸长率、层间剪切强度(ILSS)等力学性能的影响。上浆剂中主体成分环氧树脂相对分子质量不是影响碳纤维层间剪切强度的决定性因素。  相似文献   

11.
研究了炭纤维表面不同处理方法对复合材料力学性能的影响,采用等离子体和等离子体接枝技术对炭纤维表面进行处理后,CF/PMR-15复合材料的界面剪切强度与层间剪切强度均有所提高,随着界面状态的改善,界面剪切强度提高的幅度比层间剪切强度提高的大,本文为指导炭纤维的表面处理,评价处理效果,进一步预报复合材料的宏观性能打下了基础。  相似文献   

12.
In this study, grit blasting with different abrasive particle sizes was carried out on magnesium alloy sheets, then the carbon fiber reinforced polymer (CFRP)/magnesium alloys laminates were prepared using a hot-press process. The surface characteristics of magnesium alloy, and the interlaminar strength of CFRP/Mg laminates were examined, in order to investigate comprehensively the effect of surface roughness on interlaminar strength of laminates under peel and shear loading conditions. The results show that the rougher surface significantly improves the peel strength of laminates, while the shear strength of laminates increases only slightly with increasing surface roughness. Hence, the rougher surface exhibits a good overall interlaminar strength under peel and shear loading when compared to the smoother surfaces.  相似文献   

13.
Seungjin Han  D.D.L. Chung 《Carbon》2008,46(7):1060-1071
Heat dissipation from aircraft is important. Carbon fiber polymer-matrix structural composites have high in-plane thermal conductivity, but low through-thickness conductivity. A nanostructuring method involving carbon black at the interlaminar interface was developed to improve the through-thickness conductivity. Ethylene glycol monoethyl ether (EGME) was used for dispersing the carbon black and to partially dissolution of the epoxy resin on the fiber-epoxy prepreg surface. EGME evaporated from the prepreg surface prior to composite fabrication. The optimum carbon black content in EGME for attaining high through-thickness conductivity was 0.8 wt.% for both unidirectional and crossply configurations. Applying EGME without carbon black improved the conductivity by up to 36%, but in the case with carbon black, the improvement was up to 210%. For the same interlaminar interface modification (except for EGME with 1.2 wt.% carbon black), the conductivity and its fractional increase were higher for the crossply configuration than the corresponding unidirectional configuration. The through-thickness compressive modulus and the flexural modulus were increased by up to 14% and 11%, respectively by using EGME with carbon black. The average thickness of the interlaminar interface increased with increasing carbon black content, but it was decreased by the use of EGME alone.  相似文献   

14.
Carbon nanofillers with different surface functional groups and aspect ratios, including carboxyl carbon nanotubes, un-functionalized carbon nanofibers (CNFs), glycidyloxypropyl-trimethoxysilane carbon nanotubes (GPS-CNTs) and nanofibers were evaluated for their potential for increasing the interlaminar fracture toughness of an S2-glass fiber/epoxy composite. The fillers were added in the matrix of the fiber reinforced plies, in the resin interlayer between plies, or in both regions. Comparisons were made based on mode I and mode II interlaminar fracture toughness. For composites made with CNTs dispersed in the matrix, fracture toughness was largely unaffected except for a slight increase seen with long GPS-CNTs. However, adding a CNF or CNT modified resin interlayer significantly increased the fracture toughness, with the highest improvement over the baseline material achieved by adding long GPS-CNTs in the interlayer (79% and 91% for mode I and mode II onset toughness, respectively). Important material parameters identified for improving interlaminar fracture toughness are the nanofiller aspect ratio and concentration at the fracture plane. Based on microscopic evaluations of the fracture surfaces, a high density of high aspect ratio nanofillers causes the best entanglement between the filler and glass fibers and effectively obstructs interlaminar crack propagation.  相似文献   

15.
A novel and efficient method was developed for surface‐modification of Kevlar fibers by multi‐wall carbon nanotubes (MWCNTs). Kevlar fibers were immersed in a solution mixed with Hexamethylene diisocyanate, 1,4‐diazabi‐cyclo [2,2,2] octane (DABCO), and toluene to introduce pendant amine groups before the COCl‐functionalized carbon nanotubes were chemically grafted onto the surface of modified fibers under ultrasonic condition. The characterization of resulting fiber involved in SEM, infrared spectroscopy, and tensile measurement. Results indicated over 20% of the fiber surface were coated by MWCNTs even after washing, which indicated a good adhesion. Furthermore, the mean value of tensile strength of Kevlar fiber was improved by 12% compared with original one. And the interlaminar shear strength (ILSS) of the fiber‐reinforced bismaleimides composite was increased by 30%. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Free radical polymerization of vinylic monomers in the presence of carbon fibers results in the grafting of polymers onto the carbon fiber surface. Graft polymers cannot be removed by intense washing with good polymer solvents. The density and size of these structures are successfully controlled by reaction conditions. Grafting of the carbon fiber surface with hydroxyethyl methacrylate allows for introducing functional groups suitable for the reaction with an epoxy‐based resin. The resulting fiber‐reinforced composites show enhanced mechanical properties compared to samples prepared from carbon fibers equipped with a standard sizing for epoxy resins. Thus, tensile strength increases by 10%, while interlaminar shear strength improves by 20%.  相似文献   

17.
采用高频电场诱导法制备了碳纳米管定向有序填充的碳纤维/环氧树脂复合材料。研究了电场频率对复合材料力学性能的影响规律,对复合材料的显微形貌进行观察。结果表明:在富树脂区碳纳米管沿着电场方向存在明显的有序排列现象;高频电场诱导后复合材料的层间剪切强度最大提高28.9%,压缩强度提高28.83%,弯曲强度提升15.01%,断口粗糙度增加,树脂与碳纤维的界面结合状态改善。  相似文献   

18.
A study was carried out to investigate the effect of plasma modification on the mechanical properties of carbon fiber/phenolphthalein polyaryletherketone composites. The influence of oxygen plasma treatment on the surface properties of carbon fibers was investigated by X‐ray photoelectron spectroscopy and atomic force microscopy. The results indicated that oxygen plasma treatment was capable of increasing the concentrations of the oxygen‐containing groups of the carbon fiber surface as well as enhancing surface roughness. Both the chemical bonding and mechanical interlocking gave rise to an increase of the interlaminar shear strength of composite. Scanning electron microscope photographs showed that the destruction mode of composites was changed after the carbon fibers were treated by oxygen plasma. The results also indicated that the flexural properties of plasma‐treated carbon fiber composites were improved. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

19.
碳纤维表面处理对层间剪切断裂形貌的影响   总被引:7,自引:0,他引:7  
用气相氧化法对碳纤维进行表面处理,可使碳纤维复合材料(CFRP)的层间剪切强度(ILSS)提高40%-76%,这归因于纤维表面增加了化学官能团和比表面积,同时,由于碳纤维(CF)与基体之间粘接得到改善,使单向(UD)-CFRP的剪切断裂形貌变为拉剪,这可用扫描电子显微镜(SEM)观察剪断形貌得到证实。  相似文献   

20.
To improve the interfacial properties in carbon fiber (CF)-reinforced unsaturated polyester (UP) composites, we directly introduced functionalized carbon nanotubes dispersed in the fiber sizing onto the fiber surface. For comparing the influence of polymer type on sizing effect, two different polymers (UP MR13006 and water-soluble epoxy (EP)) were used to prepare sizing agent. Morphology and surface energy of CFs were examined by scanning electron microscopy and dynamic contact angle analysis test. Tensile strength was investigated in accordance with ASTM standards. Mechanical properties of the composites were investigated by interlaminar shear strength (ILSS) and impact toughness. Test results indicate that TS, ILSS, and impact toughness were enhanced simultaneously. For UP matrix, the sizing agent containing UP has better reinforcing and toughening effect than the sizing agent containing water-soluble EP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号