共查询到20条相似文献,搜索用时 109 毫秒
1.
利用遗传算法优化的支持向量机垃圾邮件分类 总被引:3,自引:0,他引:3
提出一种利用遗传算法优化支持向量机来进行垃圾邮件的分类方法.首先对邮件进行预处理,然后利用遗传算法优化支持向量机的惩罚因子和核函数参数的组合,最后利用优化后的支持向量机对邮件进行分类.在由5800篇邮件构成的数据集上进行实验的结果表明,该方法能达到89.67%的准确率,提高了对中文垃圾电子邮件过滤的准确性. 相似文献
2.
3.
4.
5.
提出了基于SVM的滴丸生产工艺参数优化方法,较好地预测了滴丸含水量,给出了各工艺参数取值范围,在实际生产中取得了良好效果。理论分析和仿真研究表明,该方法学习速度快、跟踪性能好、泛化能力强、对样本的依赖程度低,比基于BP神经网络的建模具有更好的推广能力。 相似文献
6.
二次损失函数支持向量机性能的研究 总被引:7,自引:0,他引:7
通过比较二次损失函数支持向量机和标准支持向量机在模式识别问题上的表现,分析了二次损失函数支持向量机的性能.实验表明这两种支持向量机对平衡数据有相似的分类能力,但二次损失函数支持向量机的优化参数更小,支持向量更多;对不平衡数据,二次损失函数支持向量机的分类准确率随不平衡度的增加而急剧下降.研究同时表明基于RM界的梯度方法对某些数据无效.文中定性分析了导致上述各种现象的原因.最后提出了一种利用黄金分割原理缩减二次损失函数支持向量机支持向量的方法,该方法冗余的支持向量数不超过一个. 相似文献
7.
8.
支持向量机(SVM)是在统计学习理论基础上发展而来的一种新的通用学习方法,较好地解决了有限样本的学习分类问题。用支持向量机的分类算法,选取不同的核函数,构造了支持向量机的不同分类器,并将其应用于冠心病的预测诊断。仿真结果表明,非线性的支持向量机取得了较高的准确率,支持向量机在早期冠心病的诊断中有很大的应用潜力。 相似文献
9.
基于改进萤火虫寻优支持向量机的PM2.5预测 总被引:1,自引:0,他引:1
针对现有PM2.5浓度预测误差较大的问题,提出一种基于改进萤火虫寻优支持向量机的预测模型(IFA-SVM).该模型引入邻域搜索和可变步长策略改进萤火虫算法,利用改进FA对SVM的参数C、ε和γ寻优,用最优参数SVM模型预测太原市PM2.5值.其中邻域搜索策略能为参数优化提供更多更精确的候选解;可变步长可动态调整算法搜索步长,加速收敛,平衡FA的全局和局部搜索能力.将IFA-SVM预测值与萤火虫算法-支持向量机(FA-SVM)、遗传算法-支持向量机(GA-SVM)、粒子群算法-支持向量机(PSO-SVM)相比较.结果表明较其他方法,IFA-SVM模型对太原市未来一天和三天的PM2.5值都取得了更精确的预测性能. 相似文献
10.
11.
12.
支持向量机及其在模式识别中的应用 总被引:17,自引:0,他引:17
Statistical learning theory(SLT)and support vector machine(SVM) are effective to solve problems of machine learning under the condition of finite samples.It is known that the performance of support vector machine is often better than that of some neural networks in pattern recognition,especially in high dimensional space,and they arewell used in many domains for recognition.This paper at first introduces the basic theory of SLT and SVM,then points out the key problems of SVM and its research situation in recent years,and at last describes some applications of SVM in the field of pattern recognition. 相似文献
13.
GEPSVM(Proximal Support Vector Machine Classification via Generalized Eigenvalues)是近年提出来的一种新的二分类SVM,其核心思想是通过求解广义特征方程得到两个最优超平面,然后通过计算样本到超平面的距离来决定样本所属类别。与传统SVM相比,GEPSVM降低了时间复杂度,但仍存在奇异性等问题。提出了一种新的算法TDMSVM(Twin Distance of Minimum and Maximum Support Vector Machine),其通过求解标准特征方程得到两个最优超平面,使超平面满足到本类样例的平均距离最小化,同时到另一类样例的平均距离最大化。通过理论分析和实验证明,与GEPSVM相比,TDMSVM有以下优势:进一步降低了时间复杂度;不需引入正则项,从而提高了泛化性能;克服了奇异性。 相似文献
14.
15.
16.
该文认为在人脸识别中,偏最小二乘回归方法作为一种新的降维方法,在处理小样本问题时具有明显优势,而主元分析方法作为一种传统的降维方法在选择分量时没有考虑类信息,因而有可能忽略掉重要的分类信息。支持向量机(SVM)模式识别方法具备良好的分类性能和鲁棒性。该文提出了一种基于偏最小二乘与支持向量机的人脸识别方法。利用偏最小二乘回归分析对人脸图像进行降维和特征提取,再利用支持向量机对特征向量进行分类识别。ORL人脸库的仿真结果证明偏最小二乘回归方法比主元分析方法更有效。 相似文献
17.
GAO Hui 《数字社区&智能家居》2008,(7)
首先应用K-L变换对人脸图像进行特征提取,然后利用支持向量机对其进行识别。由于支持向量机的参数对识别性能有较大影响,因此这篇文章文采用量子遗传算法对支持向量机参数进行选取。算法解决了支持向量机参数选取的难题。利用ORL人脸库进行仿真实验,得到了较好的识别效率。 相似文献
18.
19.
支撑矢量预选取的自适应投影算法 总被引:3,自引:0,他引:3
支撑矢量机是一种能在训练样本数很少的情况下达到很好分类推广能力的学习算法。但其在选择支撑矢量时却进行了大量不必要的运算,对此,该文提出了一种能够预选取支撑矢量的方法———自适应投影算法,该方法在不影响支撑矢量机的分类能力情况下,大大地减少了训练样本,提高了支撑矢量机的训练速度。仿真实验结果也验证了该方法的有效性和可行性。 相似文献