首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用遗传算法优化的支持向量机垃圾邮件分类   总被引:3,自引:0,他引:3  
提出一种利用遗传算法优化支持向量机来进行垃圾邮件的分类方法.首先对邮件进行预处理,然后利用遗传算法优化支持向量机的惩罚因子和核函数参数的组合,最后利用优化后的支持向量机对邮件进行分类.在由5800篇邮件构成的数据集上进行实验的结果表明,该方法能达到89.67%的准确率,提高了对中文垃圾电子邮件过滤的准确性.  相似文献   

2.
基于改进遗传算法的支持向量机参数优化   总被引:2,自引:0,他引:2  
支持向量机是一种非常有前景的学习机器,但是,支持向量机参数的选取一直没有一套成熟的理论,这给支持向量机的应用带来了很大的不便.为此,本文提出了基于改进遗传算法的支持向量机的参数优化方法,利用遗传算法的全局搜索能力得到支持向量机的最优参数值.仿真实验结果表明,得到的参数可使支持向量机具有良好的泛化性能,此方法切实有效.  相似文献   

3.
支持向量机研究   总被引:60,自引:9,他引:60  
支持向量机是一类新型机器学习方法,由于其出色的学习性能,该技术已成为当前国际机器学习界的研究热点。该文首先引入最优超平面的概念,然后对线性SVMs和非线性SVMs进行介绍,给出一些常用的训练算法,并指出SVMs存在的局限和将来可能的研究内容。  相似文献   

4.
基于蚁群算法的支持向量机参数选择方法研究   总被引:8,自引:1,他引:8  
研究支持向量参数选择优化问题,常用的支持向量机参数优化算法和遗传算法分别存在耗时长和易陷入局部最优值的缺陷,导致支持向量机的分类精度低.为了解决支持向量机参数优化问题,提出了基于蚁群算法的SVM分类器泛化方法.蚁群算法是一种优化搜索方法,具有较强的鲁棒性、优良的分布式计算机制,SVM参数的选取看作参数的组合优化,建立组...  相似文献   

5.
基于支持向量机的中药工艺参数优化研究   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了基于SVM的滴丸生产工艺参数优化方法,较好地预测了滴丸含水量,给出了各工艺参数取值范围,在实际生产中取得了良好效果。理论分析和仿真研究表明,该方法学习速度快、跟踪性能好、泛化能力强、对样本的依赖程度低,比基于BP神经网络的建模具有更好的推广能力。  相似文献   

6.
二次损失函数支持向量机性能的研究   总被引:7,自引:0,他引:7  
通过比较二次损失函数支持向量机和标准支持向量机在模式识别问题上的表现,分析了二次损失函数支持向量机的性能.实验表明这两种支持向量机对平衡数据有相似的分类能力,但二次损失函数支持向量机的优化参数更小,支持向量更多;对不平衡数据,二次损失函数支持向量机的分类准确率随不平衡度的增加而急剧下降.研究同时表明基于RM界的梯度方法对某些数据无效.文中定性分析了导致上述各种现象的原因.最后提出了一种利用黄金分割原理缩减二次损失函数支持向量机支持向量的方法,该方法冗余的支持向量数不超过一个.  相似文献   

7.
针对支持向量机算法在回归预测时由于参数选取不当导致过学习或欠学习的情况,提出一种基于改进遗传算法的支持向量机参数优化模型。该模型将遗传算法与支持向量机结合,利用遗传算法进化搜索的原理对支持向量机具有重要意义的惩罚参数、核参数和损失函数同时优化。实验选取3组标准数据集作为测试数据集,并将改进算法同时与遗传算法、网格寻址算法、粒子群算法进行仿真测试结果对比。实验结果表明改进的算法较大地提高了支持向量机算法整体的寻优能力。  相似文献   

8.
支持向量机(SVM)是在统计学习理论基础上发展而来的一种新的通用学习方法,较好地解决了有限样本的学习分类问题。用支持向量机的分类算法,选取不同的核函数,构造了支持向量机的不同分类器,并将其应用于冠心病的预测诊断。仿真结果表明,非线性的支持向量机取得了较高的准确率,支持向量机在早期冠心病的诊断中有很大的应用潜力。  相似文献   

9.
基于改进萤火虫寻优支持向量机的PM2.5预测   总被引:1,自引:0,他引:1  
针对现有PM2.5浓度预测误差较大的问题,提出一种基于改进萤火虫寻优支持向量机的预测模型(IFA-SVM).该模型引入邻域搜索和可变步长策略改进萤火虫算法,利用改进FA对SVM的参数C、εγ寻优,用最优参数SVM模型预测太原市PM2.5值.其中邻域搜索策略能为参数优化提供更多更精确的候选解;可变步长可动态调整算法搜索步长,加速收敛,平衡FA的全局和局部搜索能力.将IFA-SVM预测值与萤火虫算法-支持向量机(FA-SVM)、遗传算法-支持向量机(GA-SVM)、粒子群算法-支持向量机(PSO-SVM)相比较.结果表明较其他方法,IFA-SVM模型对太原市未来一天和三天的PM2.5值都取得了更精确的预测性能.  相似文献   

10.
针对高速公路事件检测算法的重要性,从高速公路交通流的特点出发,根据事件检测的基本原理,对基于支持向量机的高速公路事件检测算法进行研究。设计了2个实验,在每个实验中分别设计了基于线性不可分支持向量机(SVM)、高斯径向基核函数、双曲线正切核函数的事件检测算法,以此验证算法是否有效。利用林智仁教授的Libsvm工具箱参数优化模块对各实验的惩罚参数C和核参数进行优化选择。仿真结果表明:针对不同的实验,选择合适的SVM模型和核函数,可获得比California算法更好的性能指标。  相似文献   

11.
机械故障诊断本质上是一个模式分类问题.支持向量机由于解决分类问题有着较好的表现,得到了日益广泛的应用.针对支持向量机的参数对分类性能的影响,采用粒子群算法对支持向量机的惩罚因子和径向基核函数进行优化,使支持向量机的分类性能最优,并将其应用于实例,得到了较好的分类正确率.  相似文献   

12.
支持向量机及其在模式识别中的应用   总被引:17,自引:0,他引:17  
Statistical learning theory(SLT)and support vector machine(SVM) are effective to solve problems of machine learning under the condition of finite samples.It is known that the performance of support vector machine is often better than that of some neural networks in pattern recognition,especially in high dimensional space,and they arewell used in many domains for recognition.This paper at first introduces the basic theory of SLT and SVM,then points out the key problems of SVM and its research situation in recent years,and at last describes some applications of SVM in the field of pattern recognition.  相似文献   

13.
GEPSVM(Proximal Support Vector Machine Classification via Generalized Eigenvalues)是近年提出来的一种新的二分类SVM,其核心思想是通过求解广义特征方程得到两个最优超平面,然后通过计算样本到超平面的距离来决定样本所属类别。与传统SVM相比,GEPSVM降低了时间复杂度,但仍存在奇异性等问题。提出了一种新的算法TDMSVM(Twin Distance of Minimum and Maximum Support Vector Machine),其通过求解标准特征方程得到两个最优超平面,使超平面满足到本类样例的平均距离最小化,同时到另一类样例的平均距离最大化。通过理论分析和实验证明,与GEPSVM相比,TDMSVM有以下优势:进一步降低了时间复杂度;不需引入正则项,从而提高了泛化性能;克服了奇异性。  相似文献   

14.
基于支持向量机的自动人脸识别   总被引:1,自引:0,他引:1  
田雪  纪玉波  杨旭 《计算机工程》2005,31(5):191-193
首先应用K-L变换对人脸图像进行特征提取,然后利用支持向量机进行识别。由于支持向量机参数对其性能有较大影响,为此采用遗传算法对其参数进行选取。为了能用较少的特征个数得到较高的识别率以提高识别速度,对所需提取的有效特征个数一并进行了选择。算法既解决了支持向量机参数选取的难题,又能够利用较少的人脸特征得到较高的识别率。利用ORL人脸库进行仿真实验。得到了97.5%的正确识别结果,验证了算法的有效性。  相似文献   

15.
供应链竞争力变量因素多、信息量少、数据收集困难,造成其难以被准确评价。针对该问题构建了一个新的供应链评价指标体系,提出了一种新的供应链竞争力评价方法。它利用蜂群算法全局优化能力强的优点,对支持向量机的控制参数进行有效优化,以此为基础,构建了ABC-SVM评价模型。实验结果表明,所提方法能够有效提高供应链竞争力的评价精度,对提高企业决策效率具有积极意义。  相似文献   

16.
楼安平  杨新 《计算机仿真》2005,22(12):166-168
该文认为在人脸识别中,偏最小二乘回归方法作为一种新的降维方法,在处理小样本问题时具有明显优势,而主元分析方法作为一种传统的降维方法在选择分量时没有考虑类信息,因而有可能忽略掉重要的分类信息。支持向量机(SVM)模式识别方法具备良好的分类性能和鲁棒性。该文提出了一种基于偏最小二乘与支持向量机的人脸识别方法。利用偏最小二乘回归分析对人脸图像进行降维和特征提取,再利用支持向量机对特征向量进行分类识别。ORL人脸库的仿真结果证明偏最小二乘回归方法比主元分析方法更有效。  相似文献   

17.
首先应用K-L变换对人脸图像进行特征提取,然后利用支持向量机对其进行识别。由于支持向量机的参数对识别性能有较大影响,因此这篇文章文采用量子遗传算法对支持向量机参数进行选取。算法解决了支持向量机参数选取的难题。利用ORL人脸库进行仿真实验,得到了较好的识别效率。  相似文献   

18.
支持向量机的汉语连续语音声调识别方法   总被引:1,自引:1,他引:1  
声调信息在汉语语音识别中具有非常重要的意义。采用支持向量机对连续汉语连续语音进行声调识别实验,首先采用基于Teager能量算子和过零率的两级判别策略对连续语音进行浊音段提取,然后建立了适合于支持向量机分类模型的等维声调特征向量。使用6个二类SVM模型对非特定人汉语普通话的4种声调进行分类识别,与BP神经网络相比,支持向量机具有更高的识别率。  相似文献   

19.
支撑矢量预选取的自适应投影算法   总被引:3,自引:0,他引:3  
支撑矢量机是一种能在训练样本数很少的情况下达到很好分类推广能力的学习算法。但其在选择支撑矢量时却进行了大量不必要的运算,对此,该文提出了一种能够预选取支撑矢量的方法———自适应投影算法,该方法在不影响支撑矢量机的分类能力情况下,大大地减少了训练样本,提高了支撑矢量机的训练速度。仿真实验结果也验证了该方法的有效性和可行性。  相似文献   

20.
基于支持向量机的手写体相似字识别   总被引:19,自引:3,他引:19  
本文提出对手写相似汉字进行识别的支持向量机方法。该方法与人工神经网络一样适用于小规模分类,但由于支持向量机依据结构风险最小化原则,因此泛化能力更强。并且,由于支持向量机算法是一个凸二次优化问题,能够保证找到的极值解就是全局最优解。本文用支持向量机算法对三组手写相似汉字进行了识别,取得了较好的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号