首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 76 毫秒
1.
TC4合金和P110油管钢摩擦磨损性能的比较   总被引:1,自引:0,他引:1  
对TC4合金和P110油管钢在不同温度下的摩擦磨损性能进行对比研究,分析其摩擦系数、磨损率和磨痕形貌随温度的变化规律,探讨磨损机制.结果表明:P110油管钢的耐磨性明显优于TC4合金,TC4合金的耐磨性随温度的升高无显著变化,磨痕呈犁沟形貌,在较低温度时的磨损机制为剥层磨损、黏着磨损和疲劳磨损,在较高温度时为剥层磨损、黏着磨损和氧化磨损;P110油管钢耐磨性随温度的升高而降低,在较低温度时磨痕呈磨坑形貌,磨损机制为剥层磨损和磨粒磨损,在较高温度时磨痕形貌呈犁沟形貌,主要为剥层磨损、黏着磨损和氧化磨损.  相似文献   

2.
采用MG-2000型销盘式高温磨损试验机对TC4合金在环境温度为25~600℃、载荷为50~250 N时的磨损性能进行了研究。利用SEM、EDS和XRD等对试样磨面和剖面的形貌、成分及结构进行了观察与分析。实验结果表明,在25~300℃,TC4合金的磨损率随着温度的升高而升高。磨面呈犁沟及黏着痕迹,磨损机制为黏着磨损和磨粒磨损。在400℃时,磨面局部被摩擦氧化层所覆盖,磨损率随着载荷的增加缓慢下降,磨损机制为黏着磨损、磨粒磨损和氧化磨损。在500~600℃,磨面大部分被摩擦氧化层所覆盖,磨损率很低且随载荷变化很小,磨损机制为氧化磨损。可见,TC4合金在500~600℃具有优异的耐磨性能。  相似文献   

3.
TC4钛合金表面镀Cu摩擦磨损性能的研究   总被引:1,自引:0,他引:1  
利用硫酸盐镀铜技术在TC4钛合金表面电镀制备Cu镀层,采用SEM、EDS和STM等方法研究TC4钛合金基体及其镀Cu层的摩擦磨损性能,分析其磨损率、摩擦系数和磨痕形貌,探讨其磨损机理。结果表明:TC4钛合金表面镀Cu可以显著地改善和提高其表面耐磨性,Cu镀层的耐磨性明显地优于TC4钛合金基体;TC4钛合金基体的磨痕呈犁沟形貌,磨损机理为剥层磨损和黏着磨损;镀Cu层的磨痕呈现的是附着的塑性变形后铜磨屑形貌,磨损机理为剥层磨损和疲劳磨损。  相似文献   

4.
研究了退火和固溶时效处理对热轧态TC4钛合金的力学性能和组织的影响,并考察了其冲击磨损性能。结果表明:退火处理后试样组织中转变β相增加,强度、塑性和韧性均较热轧态有所提升;而固溶时效处理后试样组织的晶粒细化且尺寸更为均匀,同时具有最高的强度,而塑性和韧性则较热轧态有所降低。经过10 h的冲击磨损试验后,退火态试样的磨损率最低,而固溶时效态试样的磨损率最高。通过磨损断口观察发现退火态试样表面冲刷犁沟较短,且终点处存在合金的塑性堆积,同时磨损面组织发生塑性变形,晶粒延展拉长。退火态试样较高的塑性和韧性有助于吸收冲击能量,因此表现出较好的耐冲击磨损性能。  相似文献   

5.
郭宝会 《热加工工艺》2014,(18):63-65,69
分别采用GCr15和SiC球作为摩擦配副,研究了TC4合金的摩擦磨损性能及磨损表面的组织变化。结果表明:在相同摩擦载荷和磨损时间内,使用GCr15球作为摩擦配副时,TC4合金的摩擦系数较使用SiC为摩擦配副时的高,但磨损质量损失较小。TC4合金基体在两种摩擦配副下的磨损机制均主要为犁削磨损、粘着磨损和氧化磨损;使用GCr15球作为摩擦配副时粘着磨损和氧化磨损更加显著。  相似文献   

6.
选取TC4合金与3种对偶件微动磨损的完全滑移区,研究摩擦氧化层的形成对TC4合金微动磨损行为和摩擦系数的影响.结果 表明:室温下摩擦系数曲线经历阶段性变化,磨损表面未形成摩擦氧化层,磨损率均较高.合金基体加热至260℃时,TC4/GCr 15微动摩擦系数曲线最早出现由动态稳定向直线稳定的过渡,最早发生轻微磨损转变和摩擦...  相似文献   

7.
利用TRB3摩擦试验机采用球/平面接触形式探究TC4合金摩擦磨损性能,使用TC4合金球、GCr15钢球以及Si3N4陶瓷球作为对摩副探究TC4合金在不同法向载荷作用下摩擦划痕和磨损特性;通过3D激光共聚焦显微镜测量摩擦划痕形貌,建立能量磨损模型探究磨损过程中接触状态的变化机制,预测磨损进程。结果表明:随着上试样硬度的逐渐降低,球/平面的接触状态向微平面/平面的接触状态转变,摩擦划痕状态受到钛合金在压头前端位错墙和压头后端黏着颗粒的影响,划痕长度和宽度随载荷的增加线性增长,划痕深度出现“锯齿”状波动;“切削与塑性比”fcp分布于fcp=0.5两侧说明压头对TC4合金的损伤以微犁耕和微切削2种机制交互作用,说明划痕表面加工硬化现象对表面的保护作用,划痕硬度和表面粗糙度的关系可以预测材料变形过程中的损伤情况。  相似文献   

8.
采用电火花强化技术和IBED技术复合处理TC4钛合金,生成了离散复合强化层。强化层主要由电极材料和基体材料反应生成的化合物组成。强化层微动磨损体积损失是未处理试样的1/40,磨损机制为片层剥落和局部颗粒剥落。  相似文献   

9.
通过淬火条件下两相区不同温度范围内的循环热处理发现,在两相区经不同温度范围循环后,TC4合金的魏氏组织的形貌均有所改善,随循环热处理下限温度的降低,效果愈明显.经双重退火后,随循环下限温度的降低,次生针状α相减少.通过拉伸试验和对断口形貌的分析发现,960℃×10 min(→)750℃×10 min+双重退火后,韧性最好,强度略有降低.  相似文献   

10.
热循环对TC4钛合金组织和机械性能的影响   总被引:7,自引:0,他引:7  
对淬火态和时效念的TC4钛合金在-196-350℃进行了热循环试验,并测定了合金热循环前后的机械性能。结果表明:经热循环后,合金的塑性下降;时效态的合金,强度变化较小,而淬火态的合金,强度先显著上升,经3000次热循环后,合金的强度又有所下降,用透射电镜分析了合金热循环前后的组织,讨论了热循环对显微组织和机械性能的影响。  相似文献   

11.
传统的氰化物镀铜工艺会对环境造成极大的危害,钛合金无氰镀铜技术具有较高的研究价值。采用无氰化物硫酸盐镀铜技术在TC4钛合金表面制备铜镀层,利用扫描电子显微镜和能谱仪对其镀层形貌、成分、结合力、磨损形貌进行分析,并利用电化学方法和摩擦磨损试验研究其抗蚀性与耐磨性。结果表明:无氰化物镀铜技术在TC4钛合金表面电镀铜可获得表面均匀致密,结合力良好的镀层;TC4钛合金表面电镀铜后,摩擦因数由0.520降至0.381,可见钛合金表面铜镀层通过减摩作用能有效的改善和提高其耐摩擦磨损性能。TC4钛合金镀铜和未镀铜表面均存在钝化区,两者维钝电流密度分别为1×10-2 A/cm2和4×10-5 A/cm2,均有较好的抗腐蚀性能,TC4钛合金镀铜后的表面抗腐蚀性能较基体有所降低。  相似文献   

12.
目的对比不同电解液体系中制备的陶瓷膜层的耐磨损和耐腐蚀性能,判断实验条件下陶瓷膜性能最优的电解液体系。方法在相同的电参数工艺下,分别在Na Al O2,(Na PO3)6和Na2Si O3电解液体系中对TC4合金进行微弧氧化处理,处理时间为15 min。分析陶瓷层的表面形貌、成分和相结构。进行干摩擦条件下的摩擦磨损实验,对比TC4合金及三种陶瓷膜的耐磨性。通过测试极化曲线,对比TC4合金及三种陶瓷膜的耐蚀性。结果在Na Al O2,(Na PO3)6,Na2Si O3电解液体系中获得的陶瓷层表面呈现出多孔和局部凸起的相似表面特征,但相组成存在差异,主要相分别为Al2Ti O5,Al PO4和Ti O2。摩擦磨损实验表明,在10 N载荷下,以Si3N4陶瓷球作为摩擦配副,陶瓷层的磨损失重相对基材均显著减小,其中(Na PO3)6-陶瓷层失重约为基材的1/22。极化曲线分析表明,在模拟油田采出液作为腐蚀液的条件下,与TC4合金相比,陶瓷层的Ecorr显著正移,Jcorr明显减小,其中(Na PO3)6-陶瓷层的Ecorr从-0.311 V正移至0.777 V,Jcorr从9.634×10-7A/cm2减小到2.595×10-8A/cm2。结论微弧氧化处理能够显著改善TC4合金的耐磨性和耐蚀性,其中(Na PO3)6-陶瓷层的综合性能较好,有望满足TC4合金服役于油田环境时的要求。  相似文献   

13.
目的提高TC4钛合金的耐磨耐蚀性能。方法采用双阴极等离子溅射沉积技术在TC4合金表面制备了TiCN涂层。通过XRD表征了涂层的物相组成,并通过SEM表征了涂层的微观形貌。利用声发射划痕仪研究了涂层与基体的结合力,摩擦磨损试验机用于研究TiCN涂层的摩擦磨损性能。用电化学工作站在3.5%NaCl溶液中进行电化学实验。结果所沉积涂层均匀致密,无明显缺陷,涂层由外层厚度约为8μm的TiCN沉积层和其下约4μm厚的过渡层组成。TiCN涂层与TC4基体的结合强度比较高,其结合力达到66.4 N。室温条件下法向载荷相同时,TiCN涂层的磨痕宽度远小于TC4钛合金基体的磨痕宽度。TiCN涂层的比磨损率为(1~2)×10-5 mm~3/(N·m),TC4钛合金的比磨损率为(2~4)×10~(-4) mm~3/(N·m),TiCN涂层的比磨损率较TC4钛合金降低了1个数量级以上,并且对载荷的变化不敏感。TiCN涂层与TC4钛合金基体比较,具有更高的自腐蚀电位和更低的腐蚀电流密度,涂层的腐蚀电流密度为1.57×10-9 A/cm~2,TC4钛合金的腐蚀电流密度为1.35×10-8 A/cm~2,涂层的腐蚀电流密度较钛合金基体小1个数量级。TiCN涂层的EIS阻抗谱容抗弧值也较大。结论双阴极等离子溅射沉积TiCN涂层可以有效提高TC4钛合金的耐磨耐腐蚀性能。  相似文献   

14.
研究TC4合金在氯化钠溶液中的微动磨损行为,分析不同摩擦副材料下载荷与磨损形貌、摩擦系数和磨损量的关系。结果表明,微动磨损机制是粘着磨损-疲劳脱层-磨粒磨损和腐蚀磨损;腐蚀介质下摩擦系数曲线比干空气的低且平稳;Al_2O_3/TC4摩擦系数曲线波动较大,载荷较大时由微动转为往复滑动。Si_3N_4/TC4磨损量和磨损率均比GCr15/TC4的大,GCr15/TC4耐磨性优于Si_3N_4/TC4,GCr15球作摩擦副材料时磨损性能最好。TC4在氯化钠溶液中的失重是由机械磨损、腐蚀和磨损的交互作用造成的。  相似文献   

15.
目的研究TC4表面等离子Ni改性层摩擦磨损情况,以提高航空用钛合金的使用寿命。方法以近等原子比Ti Ni二元合金作为源极靶材,利用等离子表面合金化技术在TC4表面制备Ni改性层,考察合金层的组织、成分、相结构以及硬度分布,分析Ni改性层和基体的摩擦学性能。结果 Ni改性层主要由Ti2Ni,Ti Ni,Ti等相组成,Ni原子数分数最高为18%;表面硬度高达625HV;改性后的摩擦系数与基体相近,磨痕宽度是基材的1/3。结论 TC4表面等离子Ni改性层耐磨性增加。  相似文献   

16.
龚云柏  王平  杨彪  伍婷  杨钊  段艳菲  兰欣悦 《表面技术》2022,51(12):159-168
目的 研究热输入对TC4钛合金微弧氧化膜层性能的影响,控制微弧氧化过程中的能量消耗。方法 在TC4钛合金表面制备微弧氧化膜层时,通过改变热输入来形成不同的热效应,采用扫描电镜、能谱仪、X射线衍射仪分析在不同热输入下所制备膜层的表面形貌、截面形貌、元素分布和相组成,测试热输入对TC4钛合金微弧氧化膜层耐磨性和耐蚀性的影响。结果 热输入影响了膜层生成过程中的离子传输,提高了膜层中Ti原子与O原子的比值,有利于TiO2膜层的生成,但过高的热输入会使参与反应的Ti、O原子减少,从而降低膜层的生长速率。膜层的厚度随着热输入的增大先由18.53μm增加至21.56μm,随后减小至17.67μm,膜层主要相的组成为Rutile、Anatase及少量SiO2。通过改变热输入提高了膜层的耐腐蚀性能,其腐蚀速率从4.516×10–3 mm/a逐渐减小至3.109×10–4 mm/a。膜层表面的耐磨性能随着热输入的增大呈先增加后降低的趋势。结论 当热输入为140 W时,膜层的厚度最高,耐磨性能最佳,同时具备良好的耐腐蚀性...  相似文献   

17.
在自主搭建气流喷射式冲蚀试验平台上,采用不同粒径的石英砂,对TC4钛合金进行冲蚀试验;利用电子天平、扫描电子显微镜和X-射线应力仪对试件表面冲蚀质量损失率、冲蚀区微观形貌及应力进行检测与分析。结果表明,TC4钛合金表面的冲蚀损伤机理显著依赖于砂尘粒径,并在400μm处发生机理转变。砂尘粒径小于400μm时,TC4钛合金表面冲蚀质量损失率小于0.4 mg/g,其表面损伤形式以犁削、切削、铲削以及点坑等塑性损伤为主;砂尘粒径大于400μm时,TC4钛合金表面在高应变率条件下发生表观韧脆转变,质量损失率突增至0.8 mg/g以上,损伤形式以解理破坏、脆性剥落为主。基于解理断裂的双判据模型,解释了砂尘粒径高于400μm时TC4钛合金表面发生的脆性剥落现象。  相似文献   

18.
采用直接激光氮化及表面预置1 mm钛粉后再激光氮化两种工艺在TC4合金表面制备了涂层。通过XRD和带能谱仪(EDS)的场发射扫描电镜(SEM)分析了涂层的物相结构、微观形貌和局部化学成分。由摩擦磨损试验仪、喷砂机和电化学工作站分别检测了涂层的滑动摩擦性能、抗冲蚀磨损性能以及电化学腐蚀性能。结果表明:两种工艺制备的涂层主要由TiNxx=1、0.98和0.90)树枝晶、α-Ti片状晶及表面TiO2组成。经激光氮化处理后TC4合金的抗滑动摩擦、抗冲蚀磨损和耐酸蚀性能均得到了较大的提升。其中预置粉后再激光氮化由于反应充分,获得的涂层较厚,氮含量高,成分分布均匀,其抗滑动磨擦性能较TC4合金基体及直接激光氮化的样品分别提升了5.3倍和1.3倍,稳定的冲蚀失重率比基体及直接激光氮化的样品分别降低了37%及12%,极化电阻分别提高了18 915和12 537 Ω。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号