共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
3.
《低温建筑技术》2016,(3):22-25
文中采用机械和人工两种搅拌方式,分别搅拌不同时间进行实验,研究搅拌制度对液态无碱速凝剂检测性能的影响,以选出适合液态无碱速凝剂性能检测的搅拌制度。结果表明,搅拌制度(包括搅拌方式及搅拌时间)在不同水泥、速凝剂体系中,对掺速凝剂的净浆凝结时间和砂浆抗压强度的检测结果均有影响。不同速凝剂掺量条件下,无论是机械搅拌还是人工搅拌,净浆初凝、终凝时间均随着搅拌时间的延长而增加,而砂浆1d、28d抗压强度总体均为先升高后降低,强度均存在最优值,且随搅拌时间变化,1d强度变化较大,28d强度或28d强度比变化较小。对掺速凝剂净浆凝结时间的检测,应在保证速凝剂搅拌均匀的条件下,选用较短的搅拌时间;而对掺速凝剂砂浆强度的检测,应在保证速凝剂搅拌均匀的条件下,同时考虑砂浆1d和28d的强度。 相似文献
4.
梁惠廖文杰龙彩霞王恒 《新型建筑材料》2023,(3):135-138
以硫酸铝、硫酸镁、二乙醇单异丙醇胺、氟硅酸和乙醇酸为主要原料制备了一种液体无碱速凝剂,并对其性能进行了测试。结果表明,其最佳配比为:m(硫酸铝)∶m(二乙醇单异丙醇胺)∶m(氟硅酸)∶m(硫酸镁)∶m(乙醇酸)∶m(自来水)=46∶2.5∶4.0∶5.5∶0.9∶41.1。在速凝剂掺量为6%的情况下,基准水泥的初、终凝时间分别为3 min 30 s、9 min 25 s,1 d抗压强度为11.5 MPa,28 d抗压强度比为103.5%,且该速凝剂与不同水泥具有良好的适应性。 相似文献
5.
采用1,5-戊基磺酸内酯、戊基丙烯酰氧乙基二甲基胺、聚乙二醇醚、对苯二酚、丙烯酰胺、过硫酸铵和乙二醛,通过聚合、共聚和交联反应制备具有抗冻功能的稳定剂,再将上述稳定剂与硫酸铝、氟硅酸镁、二乙醇胺和磷酸混合,通过有机-无机化合反应,合成一种稳定性良好的抗冻型无碱液体速凝剂(KDSNJ-1),并对其性能进行测试。结果表明,当KDSNJ-1折固掺量为3.9%时,基准水泥净浆的凝结时间和砂浆强度均符合GB/T 35159—2017《喷射混凝土用速凝剂》要求,并且与水泥的适应性较好;低温下KDSNJ-1具有较好的抗冻性,且储存稳定期较长。 相似文献
6.
采用1,5-戊基磺酸内酯、戊基丙烯酰氧乙基二甲基胺、聚乙二醇醚、对苯二酚、丙烯酰胺、过硫酸铵和乙二醛,通过聚合、共聚和交联反应制备具有抗冻功能的稳定剂,再将上述稳定剂与硫酸铝、氟硅酸镁、二乙醇胺和磷酸混合,通过有机-无机化合反应,合成一种稳定性良好的抗冻型无碱液体速凝剂(KDSNJ-1),并对其性能进行测试。结果表明,当KDSNJ-1折固掺量为3.9%时,基准水泥净浆的凝结时间和砂浆强度均符合GB/T 35159—2017《喷射混凝土用速凝剂》要求,并且与水泥的适应性较好;低温下KDSNJ-1具有较好的抗冻性,且储存稳定期较长。 相似文献
7.
为解决当前无碱速凝剂普遍存在的稳定性差、强度偏低、与水泥相容性问题突出等问题,采用丙烯酰铵(AM)、过硫酸铵(APS)、丙烯酸(AA)、巯基乙酸(TGA)和酒石酸氢钾(KHT)反应制得悬浮稳定剂(Point-XF);采用乙二胺四乙酸(EDTA)、三乙醇胺(TEOA)、对甲苯磺酸(PTSA)和苯二酚(HQ)反应制得络合增强剂(Point-ZQ);再通过正交试验确定Point-XF、Point-ZQ、硫酸铝[Al_(2)(SO_(4))_(3)]、羟甲基纤维素(HMC)和乙二酸的最佳用量,制得一种新型无碱液体速凝剂(Point-SN3)。试验结果表明,Point-SN3不仅能有效促进水泥水化,缩短凝结时间及提高早期强度,而且还具有较高的稳定性,对不同水泥具有良好的适应性。 相似文献
8.
9.
10.
11.
12.
13.
研究了不同聚羧酸减水剂与自制无碱液体速凝剂复合后对水泥浆体凝结时间与早期强度的影响。结果表明:当无碱速凝剂掺量为水泥质量的6%时,复合推荐掺量的不同类型减水剂会显著延缓水泥净浆的凝结时间;当速凝剂掺量提高至7%时,凝结时间会缩短-延长。掺入市售聚羧酸减水剂的水泥净浆在静置30、60 min后再加入速凝剂,与同掺减水剂和速凝剂的水泥净浆相比,凝结时间延缓明显;但采用复合了保坍组分的自制聚羧酸减水剂再加入速凝剂,对水泥浆体的凝结时间影响不大。添加自制聚羧酸减水剂还会对掺无碱速凝剂水泥砂浆的1 d强度有一定的提高。 相似文献
14.
采用宏微观试验方法,研究无碱液态水泥速凝剂对水泥基材料的性能影响及其水化机理。结果表明:无碱液体速凝剂对水泥水化作用主要体现在1 d之内,水泥水化28 d时几乎不起作用;掺加6%速凝剂1 h水泥净浆硬化体有较多棒状AFt晶体形成,这些AFt晶体互相交错,填充在水泥浆体的孔隙中,使水泥净浆结构比基准水泥净浆结构更致密,使得其早期强度更高;无碱液体速凝剂的促凝机理主要是促进早期水泥浆体中AFt晶体的形成而达到促凝;SEM照片显示,生成的AFt是通过液相化学反应-沉淀析出途径生成,AFt晶体呈短柱状、随机取向,无序分布于整个硬化体空间,与基准水泥浆体形成的AFt途径完全不同,这可能是导致水泥浆体快速凝结及强度提高的主要原因。 相似文献
15.
通过试验研究了水温对混凝土速凝剂的凝结时间和抗压强度的影响,并对试验结果进行了分析,得出了有参考价值的结论,为实际工程施工中使用混凝土速凝剂提供合理依据。 相似文献
16.
17.
通过测试水泥凝结时间、1d和28d砂浆抗压强度,对比SJ-1(无碱)和SJ-2(有碱)速凝剂在不同的水泥类型、粉煤灰掺量、速凝剂掺量、水胶比影响因素下的应用效果。结果表明,从凝结时间来看,SJ-2型速凝剂对不同类型水泥的适应性更好;随粉煤灰掺量增大,水泥初终凝时间先减后增,各龄期抗压强度降低,且使用SJ-1、SJ-2速凝剂时粉煤灰掺量分别不得大于15%、10%;随速凝剂掺量增大,水泥初终凝时间不断降低,且掺入SJ-2速凝剂的各项性能均满足标准要求;随水胶比增大,水泥凝结时间逐渐增大,各龄期抗压强度先增后减,SJ-1、SJ-2速凝剂的最佳水胶比分别为0.4、0.35。 相似文献