首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The period (per) gene, controlling circadian rhythms in Drosophila, is expressed throughout the body in a circadian manner. A homolog of Drosophila per was isolated from rat and designated as rPer2. The rPER2 protein showed 39 and 95% amino acid identity with mPER1 and mPER2 (mouse homologs of per) proteins, respectively. A robust circadian fluctuation of rPer2 mRNA expression was discovered not only in the suprachiasmatic nucleus (SCN) of the hypothalamus but also in other tissues including eye, brain, heart, lung, spleen, liver, and kidney. Furthermore, the peripheral circadian expression of rPer2 mRNA was abolished in SCN-lesioned rats that showed behavioral arrhythmicity. These findings suggest that the multitissue circadian expression of rPer2 mRNA was governed by the mammalian brain clock SCN and also suggest that the rPer2 gene was involved in the circadian rhythm of locomotor behavior in mammals.  相似文献   

2.
We have cloned and characterized the mouse cDNA of a third mammalian homolog of the Drosophila period gene and designated it mPer3. The mPER3 protein shows approximately 37% amino acid identity with mPER1 and mPER2 proteins. The three mammalian PER proteins share several regions of sequence homology, and each contains a protein dimerization PAS domain. mPer3 RNA levels oscillate in the suprachiasmatic nuclei (SCN) and eyes. In the SCN, mPer3 RNA levels are not acutely altered by light exposure at different times during subjective night. This contrasts with the acute induction by light of mPer1 and mPer2 RNA levels during early and late subjective night. mPer3 is widely expressed in tissues outside of brain. In liver, skeletal muscle, and testis, mPer RNAs exhibit prominent, synchronous circadian oscillations. The results highlight the differential light responses among the three mammalian Per genes in the SCN and raise the possibility of circadian oscillators in mammals outside of brain and retina.  相似文献   

3.
The hypothalamic suprachiasmatic nucleus (SCN), the circadian clock in mammals, generates and maintains a variety of daily rhythms. The present review is an attempt to synthesis experimental data on the anatomical organisation and cellular activities within SCN. The clock exhibits an endogenous rhythmic activity and can also be entrained by environmental synchronisers such as the light/dark cycle. It can be also influenced by internal signals such as the rhythmic secretion of melatonin which is under control of SCN activity. This tiny structure contains a variety of peptides organised in a specific distribution. It receives three main inputs from the retina (glutamate), the intergeniculate leaflet (NPY) and the dorsal raphe (serotonin). VIP containing cells located in the ventral part of SCN receive all these afferences and innervate the whole structure. VIP, PHI and GRP are likely implicated in the entrainment of the clock. The vasopressin (VP) cells exhibiting an endogenous rhythmic synthesis are considered as an output of the clock. The specific induction of immediate early genes (c-fos, jun B) within SCN by light pulses during the subjective night suggests the participation of these genes in the process of cellular entrainment by the photic input. The demonstration of a rhythmic astrocytic activity within SCN suggests an active involvement of this cellular population in the functioning of the clock facilitating or not neuronal communication. Cellular disturbances such as a decrease in VIP or VP cell population, reduction in the amplitude of functional cellular rhythms, astrocytic proliferation could explain some pathologies observed with ageing.  相似文献   

4.
5.
The suprachiasmatic nucleus is commonly considered to contain the main pacemaker of behavioral and hormonal circadian rhythms. Using whole-cell patch-clamp recordings, the membrane properties of suprachiasmatic nucleus neurons were investigated in order to get more insight in membrane physiological mechanisms underlying the circadian rhythm in firing activity. Circadian rhythmicity could not be detected either in spontaneous firing rate or in other membrane properties when whole-cell measurements were made following an initial phase shortly after membrane rupture. However, this apparent lack of rhythmicity was not due to an unhealthy slice preparation or to seal formation, as a clear day/night difference in firing rate was found in cell-attached recordings. Furthermore, in a subsequent series of whole-cell recordings, membrane properties were assessed directly after membrane rupture, and in this series we did find a significant day/night difference in spontaneous firing rate, input resistance and frequency adaptation. As concerns the participation of different subpopulations of suprachiasmatic nucleus neurons expressing circadian rhythmicity, cluster I neurons exhibited strong rhythmicity, whereas no day/night differences were found in cluster II neurons. Vasopressin-containing cells form a subpopulation of cluster I neurons and showed a more pronounced circadian rhythmicity than the total population of cluster I neurons. In addition to their strong rhythm in spontaneous firing rate they also displayed a day/night difference in membrane potential.  相似文献   

6.
The suprachiasmatic nuclei (SCN) contain the principal circadian clock governing overt daily rhythms of physiology and behavior. The endogenous circadian cycle is entrained to the light/dark via direct glutamatergic retinal afferents to the SCN. To understand the molecular basis of entrainment, it is first necessary to define how rapidly the clock is reset by a light pulse. We used a two-pulse paradigm, in combination with cellular and behavioral analyses of SCN function, to explore the speed of resetting of the circadian oscillator in Syrian hamster and mouse. Analysis of c-fos induction and cAMP response element-binding protein phosphorylation in the retinorecipient SCN demonstrated that the SCN are able to resolve and respond to light pulses presented 1 or 2 hr apart. Analysis of the phase shifts of the circadian wheel-running activity rhythm of hamsters presented with single or double pulses demonstrated that resetting of the oscillator occurred within 2 hr. This was the case for both delaying and advancing phase shifts. Examination of delaying shifts in the mouse showed resetting within 2 hr and in addition showed that resetting is not completed within 1 hr of a light pulse. These results establish the temporal window within which to define the primary molecular mechanisms of circadian resetting in the mammal.  相似文献   

7.
The suprachiasmatic nuclei (SCN) express the highly polysialylated form of the neural cell adhesion molecule (NCAM) that has been proposed to promote plasticity in the adult brain. To investigate a role for NCAM in SCN circadian clock function, we examined the daily locomotor rhythm of mice homozygous for a mutation, Ncamtm1Cwr, which results in deletion of the NCAM-180 isoform that in brain carries polysialic acid (PSA). Mutant mice entrained well to a 12 hr light/dark cycle but exhibited a significantly shortened free-running period and longer activity duration under constant darkness (DD) than did wild-type mice. By the third week of DD treatment, circadian rhythmicity in the mutant was abolished. Immunocytochemical analyses of the mutant SCN revealed an abnormal number and distribution of vasoactive intestinal polypeptide-producing neurons, suggesting a developmental effect of the mutant phenotype; however, a direct physiological effect of the mutation on clock function was indicated by the fact that removal of PSA from adult wild-type SCN by microinjection of endoneuraminidase shortened the free-running period to a similar extent as in the mutant. Together, these data indicate critical roles for NCAM and PSA in the development and physiology of the mammalian SCN circadian clock.  相似文献   

8.
Previously, we isolated a single line of transgenic mice which develop an enlarged heart due to the expression of the immortalizing gene, polyomavirus large T antigen. Immortal cell lines were isolated from adult transgenic but not from nontransgenic hearts. All of the 24 cell lines expressed vimentin and fibronectin but not desmin or myosin heavy chain. We conclude that the cell lines are of non-muscle origin. Six cell lines were chosen for further study. All six cell lines demonstrate profound morphological and biochemical effects when incubated with 10(-4) M to 10(-7) M retinoic acid. The retinoic acid-treated cell lines showed arrested cellular proliferation and aligned to form rows and vesicle-like structures. Cycloheximide inhibited these retinoic acid-induced changes, indicating a need for continued protein synthesis. Retinoic acid-treated, but not untreated, cells lost expression of vimentin and fibronectin, gained the ability to incorporate acetylated low density lipoprotein, and expressed Factor VIII-related antigen. Retinoic acid did not induce expression of desmin or myosin heavy chain. Incubation of the cell lines with transforming growth factor beta 1, dimethyl sulfoxide, or phorbol esters had no biochemical or morphological effect. We conclude that these cell lines differentiate to an endothelial lineage in the presence of retinoic acid.  相似文献   

9.
The authors examined the ability of a conditioned stimulus (CS; mild air disturbance) previously paired with an entraining light pulse to reset the circadian pacemaker in rats. Rats were entrained to a single 30-min light stimulus delivered every 25 hr or 24 hr (T cycle). Each daily light presentation was paired with the CS. After at least 20 days of stable entrainment to each of the T cycles, the rats were allowed to free run and were then presented with the CS at circadian time 15. CS-induced phase shifts in wheel-running activity rhythms were taken as evidence for conditioning. For the most part, conditioning occurred after CS-light pairings on the 25-hr but not 24-hr T cycle. The results suggest that CS control of the circadian clock phase depends on the effect that the entraining light pulse has on the clock during conditioning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
Behavioral and electrophysiological evidence indicates that the biological clock in the hypothalamic suprachiasmatic nuclei (SCN) can be reset at night through release of glutamate from the retinohypothalamic tract and subsequent activation of nitric oxide synthase (NOS). However, previous studies using NADPH-diaphorase staining or immunocytochemistry to localize NOS found either no or only a few positive cells in the SCN. By monitoring conversion of L-[3H]arginine to L-[3H]-citrulline, this study demonstrates that extracts of SCN tissue exhibit NOS specific activity comparable to that of rat cerebellum. The enzymatic reaction requires the presence of NADPH and is Ca2+/calmodulin-dependent. To distinguish the neuronal isoform (nNOS; type I) from the endothelial isoform (type III), the enzyme activity was assayed over a range of pH values. The optimal pH for the reaction was 6.7, a characteristic value for nNOS. No difference in nNOS levels was seen between SCN collected in day versus night, either by western blot or by enzyme activity measurement. Confocal microscopy revealed for the first time a dense plexus of cell processes stained for nNOS. These data demonstrate that neuronal fibers within the rat SCN express abundant nNOS and that the level of the enzyme does not vary temporally. The distribution and quantity of nNOS support a prominent regulatory role for this nitrergic component in the SCN.  相似文献   

11.
Examined the role of the suprachiasmatic nuclei (SCN) in nonphobic entrainment. The wheel-running activity of SCN-ablated hamsters was recorded in constant dark (DD) and then under prolonged schedules of 2-hr daily cage changes, restricted food availability, and daily light–dark (LD) cycles. Ss with very large lesions subsuming the SCN and surrounding areas exhibited significant, albeit unstable, circadian activity rhythms in DD. Some Ss with similar ablations also showed entrained rhythms to daily cage change schedules. Ss showed robust rhythms entrained to a daily feeding schedule. No Ss showed entrainment to LD cycles. Competent circadian oscillators evidently exist outside the SCN, at least 0.5 mm or more away, and at least some are nonphotically entrainable. Weaker entrainment in animals with larger lesions suggests that nonphotically entrainable oscillators also exist within the SCN or its immediate vicinity. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
13.
To determine whether the circadian rhythms in blood pressure (BP), heart rate (HR) and locomotor activity are controlled by an internal biological clock located in the suprachiasmatic nucleus (SCN), we continuously measured these parameters in SCN-lesioned rats using a newly developed implantable radiotelemetry device and a computerized data collecting system. Although SCN-lesioned rats showed a weak but significant 24-h periodicity in BP and HR under light-dark (LD) cycles, BP, HR and locomotor activity became completely aperiodic under constant dark (DD) conditions. The amount of locomotor activity was significantly reduced in SCN-lesioned rats compared to that in intact rats. BP tended to be higher in SCN-lesioned rats, but the differences were significant only in the comparison of systolic blood pressure (SBP) under LD and DD (p < 0.05) and of mean blood pressure (MBP) under LD (p < 0.05). HR in SCN-lesioned rats was significantly lower under LD (p < 0.05), but not under DD. The standard deviation and the variation coefficient of MBP, as indices of short-term variability of this parameter, were significantly larger in SCN-lesioned rats than in intact rats, while those of HR and locomotor activity did not differ significantly between SCN-lesioned and intact rats. These results indicate that the SCN is important not only for generating circadian rhythms of BP, HR and locomotor activity, but also for buffering the short-term variability of BP in rats.  相似文献   

14.
Two glial cell types surround olfactory axons and glomeruli in the olfactory bulb (OB) and may influence synapse development and regeneration. OB astrocytes resemble type-1 astrocytes, and OB ensheathing cells resemble non-myelinating Schwann cells. We have produced clonal OB astrocyte and ensheathing cell lines from rat neonatal and adult OB cultures by SV40 large T antigen transduction. These cell lines have been characterized by morphology, growth characteristics, immunophenotype, and ability to promote neurite outgrowth in vitro. Neonatal and adult ensheathing cell lines were found to support higher neurite outgrowth than OB astrocyte lines. Neonatal OB astrocyte lines were of two types, high and low outgrowth support. The low support astrocyte lines express J1 and a chondroitin sulfate-containing proteoglycan as do astrocytes encircling the neonatal glomeruli in vivo. The adult OB astrocyte cell lines supported lower levels of outgrowth than adult ensheathing cell lines. These results are consistent with a positive role for ensheathing cells in OB synapse regeneration, in vivo. Further, based on our results, we hypothesize that ensheathing cells and high-outgrowth astrocytes facilitate axon growth in vivo, while low outgrowth astrocytes inhibit axon growth and may facilitate glomerulus formation.  相似文献   

15.
Photic resetting of the adult mammalian circadian clock in vivo is associated with phosphorylation of the Ser133 residue of the calcium/cyclic AMP response-element binding-protein (CREB) in the retinorecipient region of the suprachiasmatic nucleus (SCN). Western blotting and immunocytochemistry were used to investigate whether agonists known to reset the clock of neonatal hamsters in vivo are also able to influence the phosphorylation of CREB in the suprachiasmatic hypothalamus in vitro. Antisera raised against synthetic CREB peptide sequences were used to differentiate between total CREB and the Ser133 phosphorylated form of CREB (pCREB). Western blot analysis of proteins isolated from suprachiasmatic tissue of 1-day-old Syrian hamsters revealed bands at approximately 45 kDa corresponding to total CREB and pCREB. Treatment of the tissue with a mixture of glutamatergic agonists [N-methyl-D-aspartate (NMDA), amino-methyl proprionic acid (AMPA) and kainate, all at 1 microM], or native glutamate (1 microM) had no effect on the total CREB signal, but increased the pCREB signal, indicative of agonist-stimulated phosphorylation of CREB on Ser133. A similar effect was seen following treatment of the suprachiasmatic blocks with either dopamine (1 microM) or forskolin (1 microM). Simultaneous treatment with melatonin (1 microM) significantly attenuated stimulation by forskolin. The effect of the agonists on nuclear pCREB-immunoreactivity (-ir) was investigated in primary cultures which contained a mixture of cell types characteristic of the suprachiasmatic nuclei in vivo. Basal expression of nuclear total CREB-ir was high, whereas expression of pCREB-ir was low. Treatment with glutamate (1 microM) or dopamine (1 microM) had no effect on total CREB-ir, but increased pCREB-ir in approximately 50 and 30% of cells, respectively, whereas forskolin (1 microM) increased pCREB-ir in almost all cells (> 90%). The effects of all three agonists were rapid (< 15 min), and dose and time dependent. Melatonin reversed the effects of forskolin in mixed cultures, but not in pure astrocyte cultures. Dual-immunocytochemistry (ICC) revealed that glutamate (1 microM) increased nuclear pCREB-ir in cells immunoreactive for microtubule-associated protein II (MAP II-ir), but not other cells, indicating an effect predominantly on neurons. This occurred equally in gamma-amino butyric acid (GABA)-ir and non-GABA-ir neurons. Dopamine (1 microM) was more selective, increasing pCREB-ir only in GABA-ir neurons, whereas forskolin increased pCREB-ir in all cells. The specific stimulation of pCREB-ir in GABA-ir neurons by dopamine was reversed by melatonin, but melatonin had no effect on the increase in pCREB-ir induced in GABA-ir neurons by glutamate. These results demonstrate that agonists known to entrain the circadian clock in vivo modulate phosphorylation of CREB in GABA-ir neurons derived from the neonatal suprachiasmatic nuclei.  相似文献   

16.
17.
Converging lines of evidence have firmly established that the hypothalamic suprachiasmatic nucleus (SCN) is a light-entrainable circadian oscillator in mammals, critically important for the expression of behavioral and physiological circadian rhythms. Photic information essential for the daily phase resetting of the SCN circadian clock is conveyed directly to the SCN from retinal ganglion cells via the retinohypothalamic tract. The SCN also receives a dense serotonergic innervation arising from the mesencephalic raphe. The terminal fields of retinal and serotonergic afferents within the SCN are co-extensive, and serotonergic agonists can modify the response of the SCN circadian oscillator to light. However, the functional organization and subcellular localization of 5HT receptor subtypes in the SCN are just beginning to be clarified. This information is necessary to understand the role 5HT afferents play in modulating photic input to the SCN. In this paper, we review evidence suggesting that the serotonergic modulation of retinohypothalamic neurotransmission may be achieved via at least two different cellular mechanisms: 1) a postsynaptic mechanism mediated via 5HT1A or 5ht7 receptors located on SCN neurons; and 2) a presynaptic mechanism mediated via 5HT1B receptors located on retinal axon terminals in the SCN. Activation of either of these 5HT receptor mechanisms in the SCN by specific 5HT agonists inhibits the effects of light on circadian function. We hypothesize that 5HT modulation of photic input to the SCN may serve to set the gain of the SCN circadian system to light.  相似文献   

18.
A number of kinetic measurements of peptide dissociation from class II MHC-peptide complexes provide compelling evidence for the existence of conformational isomers in solution. There is evidence that T-lymphocytes can distinguish such isomers. However, virtually nothing is known about the structure of these isomers. Accordingly, we have investigated a water-soluble version of the murine class II MHC molecule I-Ek complexed with an antigenic peptide derived from pigeon cytochrome c residues 89-104 (PCC) by 19F-NMR. Two fluorine labels were placed on the PCC peptide; one fluorine label was placed at a MHC contact site, the other at a position involved in T-cell receptor (TCR) recognition. Introduction of these labels did not alter the observed kinetics of the PCC/I-Ek complex. The NMR data show two conformational isomers of this immunogenic complex. The presence of conformational isomers at a TCR contact site suggests that these structures may be recognized differently by the TCR. The agreement between the dissociation kinetics and the 19F-NMR data demonstrate that kinetic heterogeneity is correlated with structural counterparts observed by NMR. Dissociations in the presence of dimethyl sulfoxide were used to show that the rate of interconversion of these conformational isomers at pH 7.0 is low, with a lifetime on the order of hours or more. Modification of a peptide residue of PCC occupying the minor MHC binding pocket P6 alters the 19F-NMR spectra of both labels. This demonstrates that distant changes of amino acid residues can influence the conformation of the whole antigenic peptide inside the MHC binding cleft.  相似文献   

19.
20.
Circadian clocks are synchronized by environmental cues such as light. Photoreceptor-deficient Arabidopsis thaliana mutants were used to measure the effect of light fluence rate on circadian period in plants. Phytochrome B is the primary high-intensity red light photoreceptor for circadian control, and phytochrome A acts under low-intensity red light. Cryptochrome 1 and phytochrome A both act to transmit low-fluence blue light to the clock. Cryptochrome 1 mediates high-intensity blue light signals for period length control. The presence of cryptochromes in both plants and animals suggests that circadian input pathways have been conserved throughout evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号