首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of biodegradable poly(L ‐lactide‐co‐?‐caprolactone) (PCLA) copolymers with different chemical compositions are synthesized and characterized. The mechanical properties and shape‐memory behaviors of PCLA copolymers are studied. The mechanical properties are significantly affected by the copolymer compositions. With the ?‐caprolactone (?‐CL) content increasing, the tensile strength of copolymers decreases linearly and the elongation at break increases gradually. By means of adjusting the compositions, the copolymers exhibit excellent shape‐memory effects with shape‐recovery and shape‐retention rate exceeding 95%. The effects of composition, deformation strain, and the stretching conditions on the recovery stress are also investigated systematically. A maximum recovery stress around 6.2 MPa can be obtained at stretching at Tg ? 15°C to 200% deformation strain for the PCLA70 copolymer. The degradation results show that the copolymers with higher ?‐CL content have faster degradation rates and shape‐recovery rates, meanwhile, the recovery stress can maintain a relative high value after 30 days in vitro degradation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
In this research, poly(L ‐lactide‐co‐ε‐caprolactone) (PLACL) reinforced with well‐dispersed multiwalled carbon nanotubes (MWCNTs) nanocomposites were prepared by oxidization and functionalization of the MWCNT surfaces using oligomeric L ‐lactide (LA) and ε‐caprolactone (CL). It is found that the surface functionalization can effectively improve the dispersion and adhesion of MWCNTs in PLACL. The surface functionalization will have a significant effect on the physical, thermomechanical, and degradation properties of MWCNT/PLACL composites. The tensile modulus, yield stress, tensile strength, and elongation at break of composite increased 49%, 60%, 70%, and 94%, respectively, when the concentration of functionalized MWCNTs in composite is 2 wt %. The in vitro degradation rate of nanocomposites in phosphate buffer solution increased about 100%. The glass transition temperature (Tg) of composites was decreased when the concentration of functionalized MWCNTs is 0.5 wt %. With further increasing the concentration of functionalized MWCNTs, the Tg was increased. The degradation kinetics of nanocomposites can be engineered and functionalized by varying the contents of pristine or functionalized MWCNTs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Freeze and freeze‐thaw durability characteristics of fiber reinforced polymer (FRP) composites, especially in the presence of moisture, need to be investigated prior to the widespread implementation of these materials in civil, polar, and offshore structural components and systems. The hygrothermal degradation characteristics of an ambient cure E‐glass/vinylester system due to exposure to ?10°C conditions and conditions of freeze‐thaw, including in the presence of water and seawater, was investigated. Changes in mechanical characteristics such as strength and modulus, and thermo‐mechanical dynamic characteristics such as storage and loss moduli, and glass‐transition temperature were measured, and short‐term effects of environmental exposure were assessed. It is seen that the presence of moisture/solution has a significant effect; both in terms of physical and chemical aging, and in terms of microcracking and fiber–matrix debond initiation. Results indicate the critical importance of cure characteristics and diffusion related phenomena. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2255–2260, 2002  相似文献   

4.
A novel hydroxyl‐terminated short‐chain penta‐armed phosphazene was prepared. This penta‐armed compound was studied as an initiator for the synthesis of asymmetric penta‐armed poly(ε‐caprolactone)s in the presence of stannous octoate. The effect of molar ratio of monomer to initiator was investigated. Thermal analysis revealed that the penta‐armed poly(ε‐caprolactone)s possessed lower melting point and crystallinity than linear ones. The penta‐armed poly(ε‐caprolactone)s with long chain‐length exhibited higher onset decomposition temperature and maximum decomposition temperature than linear ones owing to the presence of the phosphazene core. The in vitro degradation of linear and penta‐armed PCL was performed in phosphate buffer solution at 37 and 55 °C. Copyright © 2005 Society of Chemical Industry  相似文献   

5.
The melt polycondensation reaction of N‐protected trans‐4‐hydroxy‐L ‐proline (N‐Z‐Hpr) and ?‐caprolactone (?‐CL) over a wide range of molar fractions in the feed produced new and degradable poly(N‐Z‐Hpr‐co‐?‐CL)s with stannous octoate as a catalyst. The optimal reaction conditions for the synthesis of the copolymers were obtained with 1.5 wt % stannous octoate at 140°C for 24 h. The synthesized copolymers were characterized by IR spectrophotometry, 1H NMR, differential scanning calorimetry, and Ubbelohde viscometry. The values of the inherent viscosity (ηinh) and glass‐transition temperature (Tg) of the copolymers depended on the molar fractions of N‐Z‐Hpr. With an increase in the trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline (N‐CBz‐Hpr) feed from 10 to 90 mol %, a decrease in ηinh from 2.47 to 1.05 dL/g, and an increase in Tg from ?48 to 49°C were observed. The in vitro degradation of these poly(N‐CBz‐Hpr‐co‐?‐CL)s was evaluated from weight‐loss measurements. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3176–3182, 2003  相似文献   

6.
Block copolymers containing ε‐caprolactone were synthesized. Mechanical properties as a function of chemical composition and domain structure as a function of elongation were studied. Based on previous optimal conditions determination by factorial design of experiments of ε‐caprolactone anionic polymerization, polystyrene‐block‐poly(ε‐caprolactone), polyisoprene‐block‐poly(ε‐caprolactone), polystyrene‐block‐polybutadiene‐block‐poly(ε‐caprolactone) (SBCL), and polystyrene‐block‐polyisoprene‐block‐poly(ε‐caprolactone) (SICL) with different compositions where synthesized, and characterized by GPC and DSC. Both the SICL and SBCL materials are thermoplastic elastomers, from which spin‐cast films were prepared. Their mechanical properties were determined, small angle X‐ray scattering (SAXS) measurements were carried out during straining, and dynamic mechanical analysis (DMA) was performed. All diblock polymers separate into a two‐phase structure, but the melting point of crystalline poly(ε‐caprolactone) domains in the block polymer is higher than in the case of the homopolymer. According to DMA data, some of the SICL and SBCL materials are three‐phase systems, but others are only two‐phase systems. The two‐phase materials show a considerable depression of the composite hard domain glass transition and, consequently, turn out to be very soft. It appears peculiar that the transition from three‐phase to two‐phase material is accomplished by decreasing the soft block length. For the soft material SAXS exhibits a lamellar stack nanoscale structure and several reflections of colloidal crystals. As a function of increasing elongation, the crystal reflections broaden, whereas lamellar stacks rotate as a whole.  相似文献   

7.
2‐Hydroxyethyl methacrylate (HEMA) solution (1–10 wt %) was prepared in methanol and phosphate glass fibers were immersed in that solution for 5 min before being cured (irradiation time: 30 min) under UV radiation. Maximum polymer loading (HEMA content) was found for the 5 wt % HEMA solution. Degradation tests of the fibers in aqueous medium at 37°C suggested that the degradation of the HEMA‐treated fibers was lower than that of the untreated fibers. X‐ray photoelectron spectroscopy revealed that HEMA was present on the surface of the fibers. Using 5 wt % HEMA‐treated fibers, poly(caprolactone) matrix unidirectional composites were fabricated by in situ polymerization and compression molding. For in situ polymerization, it was found that 5 wt % HEMA‐treated fiber‐based composites had higher bending strength (13.8% greater) and modulus (14.0% greater) than those of the control composites. For compression molded composites, the bending strength and modulus values for the HEMA‐treated samples were found to be 27.0 and 31.5% higher, respectively, than the control samples. The tensile strength, tensile modulus, and impact strength of the HEMA composites found significant improvement than that of the untreated composites. The composites were investigated by scanning electron microscopy after 6 weeks of degradation in water at 37°C. It was found that HEMA‐treated fibers inside the composite retained much of their original integrity while the control samples degraded significantly. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Polystyrene terminated with benzyl alcohol units was employed as a macroinitiator for ring‐opening polymerization of ε‐caprolactone and L ‐lactide to yield AB‐ and ABC‐type block copolymers. Even though there are many reports on the diblock copolymers of poly(styrene‐block‐lactide) and poly(styrene‐block‐lactone), this is the first report on the poly(styrene‐block‐lactone‐block‐lactide) triblock copolymer consisting of two semicrystalline and degradable segments. The triblock copolymers exhibited twin melting behavior in differential scanning calorimetry (DSC) analysis with thermal transitions corresponding to each of the lactone and lactide blocks. The block derived from ε‐caprolactone also showed crystallization transitions upon cooling from the melt. In the DSC analysis, one of the triblock copolymers showed an exothermic transition well above the melting temperature upon cooling. Thermogravimetric analysis of these block copolymers showed a two‐step degradation curve for the diblock copolymer and a three‐step degradation for the triblock copolymer with each of the degradation steps associated with each segment of the block copolymers. The present study shows that it is possible to make pure triblock copolymers with two semicrystalline segments which also consist of degradable blocks. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
Eight biomedical glasses and three commercial glasses, as finely divided powders, were tested as initiators for the ring‐opening polymerization of ?‐caprolactone in bulk and in vacuo at 185°C. All the glass powders were able to initiate the polymerization, along with Pyrex, which was totally inert toward the monomer as the inner surface of a phial. The obtained polymers were examined with Fourier infrared transform spectroscopy and atomic force microscopy. The molecular weights were measured by viscometry in CHCl3. The presence of a fraction of the polymer firmly linked to the glass was quantitatively checked by the determination of the weight loss from the residues of the extraction with CHCl3 after calcination in a kiln at 945°C. The molecular weights and weight losses per unit surface were elaborated mathematically so that a possible correlation between these properties and the atomic compositions of the glasses could be better investigated. Two possible initiation mechanisms, induced by the hydroxyls present on the glass surface, were proposed: one for free poly(?‐caprolactone) and one for poly(?‐caprolactone) linked to the glass. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1579–1586, 2003  相似文献   

10.
A series of random polyesteramides (PEAs) based on ε‐caprolactone and glycine were synthesized by a direct melt polycondensation method. Their structure was fully characterized by NMR spectroscopy. High molar mass PEAs were obtained for glycine contents lower than 15 mol‐%. The resulting copolymers are semi‐crystalline and present increasing glass transition temperatures but decreasing melting points at increasing glycine contents. Some of these PEAs exhibit better thermal stability and higher Young's modulus and ultimate tensile strength than PCL homopolymer. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40573.  相似文献   

11.
Nuclear magnetic resonance spectroscopy (NMR) characterization of the statistical copolymers of this study showed that the poly(ε‐caprolactone‐co‐L‐lactide)s, with ε‐caprolactone (ε‐CL) molar contents ranging from 70 to 94% and ε‐CL average sequence length (lCL) between 2.20–9.52, and the poly(ε‐caprolactone‐co‐δ‐valerolactone)s, with 60 to 85% of ε‐CL and lCL between 2.65–6.08, present semi‐alternating (R→2) and random (R~1) distribution of sequences, respectively. These syntheses were carried out with the aim of reducing the crystallinity of poly(ε‐caprolactone) (PCL), needed to provide mechanical strength to the material but also responsible for its slow degradation rate. However, this was not achieved in the case of the ε‐caprolactone‐co‐δ‐valerolactone (ε‐CL‐co‐δ‐VAL). Non‐isothermal cooling treatments at different rates and isothermal crystallizations (at 5, 10, 21 and 37°C) were conducted by differential scanning calorimetry (DSC), and demonstrated that ε‐CL copolymers containing δ‐valerolactone (δ‐VAL) exhibited a larger crystallization capability than those of L‐lactide (L‐LA) and also arranged into crystalline structures over shorter times. The crystallization enthalpies of the ε‐CL‐co‐δ‐VAL copolymers during the cooling treatments and their heat of fusion (ΔHm) at the different isothermal temperatures were very large (i.e. ΔHc > 53 Jg?1) and in some cases, unrelated to the copolymer composition. In some compositions, such as the 60 : 40, Wide Angle X‐ray Scattering (WAXS) proved that that these two lactones undergo isomorphism and co‐crystallize in a single cell. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42534.  相似文献   

12.
The compatibilization of various poly(vinyl chloride) (PVC) blends was investigated. The blend systems were PVC‐polyamide 12 (PA12), PVC‐polypropylene (PP), and PVC‐ethylene‐propylene‐diene rubber (EPDM) with a new compatibilizing agent, random‐block terpolymer poly(ω‐lauryllactam‐random‐?‐caprolactam‐block‐?‐caprolactone) or systems containing these copolymers. The results were compared to those obtained in previous studies using poly(ω‐lauryllactam‐block‐?‐caprolactone) copolymer. The new block copolymer was specially synthesized by reactive extrusion. Observation by scanning electron microscopy (SEM) revealed that compatibilized blends had a finer morphology than the noncompatibilized blends. Addition of 10 weight percent (wt%) of block copolymer proved to be sufficient to give a significant improvement of the mechanical properties of the immiscible PVC blends at room temperature and at high temperatures that were above the glass transition temperature of PVC. For polyolefins, a three‐component compatibilizing system including maleated polypropylene, polyamide 12, and block copolymer was used. It was found that poly(ω‐lauryllactam‐random‐?‐caprolactam‐block‐?‐caprolactone) was the more efficient compatibilizing agent for the modification of PVC‐polyamide 12, PVC‐polypropylene, and PVC‐ethylene‐propylene‐diene rubber blends. J. VINYL. ADDIT. TECHNOL., 11:95–110, 2005. © 2005 Society of Plastics Engineers  相似文献   

13.
With the aim to develop novel biodegradable materials with good flexibility and fast degradation rate, random copolymers of ?‐caprolactone (CL) and p‐dioxanone (PDO) with a full range of compositions were synthesized in bulk using stannous octoate as the ring‐opening catalyst. The chemical composition and number average sequence lengths of CL and PDO units determined by 1H‐NMR were used to correlate with various properties of the copolymers. Although both CL and PDO are crystalline components, only one crystalline phase could be present for each copolymer. The low limit of average block length for the copolymers that could crystallize is 3.22 for LCL and 3.43 for LPDO, respectively. The crystallinity and crystalline morphology of the copolymers are dependent on the crystalline component as well as its number average sequence length. Irrespective of composition, all the copolymers have good solubility in chloroform with glass transition temperature much below room temperature, implying good flexibility of the materials. The incorporation of PDO component could significantly increase the water wettability of the copolymer surfaces and thereby accelerate the degradation rate of the materials. In conclusion, flexible biodegradable polymers with adjustable degradation and crystalline properties were acquired by random copolymerization of CL and PDO, which are expected to use in tissue engineering and drug delivery fields. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2978–2986, 2013  相似文献   

14.
This paper describes the synthesis of a series of ABA‐type triblock copolymers of trimethylene carbonate and ?‐caprolactone with various molar ratios and analyses the thermal and mechanical properties of the resulting copolymers. The structures of the triblock copolymers were characterized by 1H and 13C nuclear magnetic resonance spectroscopy, FT‐IR spectroscopy and gel permeation chromatography. Results obtained from the various characterization methods proves the successful synthesis of block copolymers of trimethylene carbonate and ?‐caprolactone. The thermal properties of the block copolymers were investigated by differential scanning calorimetry. The Tm and ΔHm values of the copolymers decrease with increasing content of trimethylene carbonate units. Two Tgs were found in the copolymers. Furthermore, both of the Tg values increased with increasing content of trimethylene carbonate units. The mechanical properties of the resulting copolymers were studied by using a tensile tester. The results indicated that the mechanical properties of the block copolymers are related to the molar ratio of trimethylene carbonate and ?‐caprolactone in the copolymers, as well as the molecular weights of the resulting copolymers. The block copolymer with a molar composition of 50/50 possessed the highest tensile stress at maximum and modulus of elasticity. Block copolymers possessing different properties could be obtained by adjusting the copolymer compositions. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
With the growing number of therapeutic proteins on the market, effective delivery systems are receiving particular attention. In this study, biodegradable elastomers, intended for protein drug delivery and based on methacrylic tripoly(ε‐caprolactone‐co‐d ,l ‐lactide) cyclic ester with different ratios of ?‐caprolactone to d ,l ‐lactide and methacrylic bipoly[?‐caprolactone‐b‐poly(ethylene glycol)‐b‐?‐caprolactone], were synthesized and characterized. The degradation behavior, bovine serum albumin (BSA)‐releasing kinetics, and cytotoxicity of the elastomers in vitro were investigated. The elastomers were degraded by the hydrolysis of the ester bond; this resulted in pH changes, which further affected the degradation rate. The BSA‐releasing behavior was strongly dependent on the diffusion mechanism. In the diffusion‐controlled period, nearly sustained and stable BSA release was achieved. Furthermore, the elastomers displayed good biocompatibility, as demonstrated by a 3‐(4,5‐dimethyl thiazol‐2‐yl)?2,5‐diphenyl tetrazolium bromide assay and inflammation–induction experiments, and are considered promising candidates for the controllable delivery of protein drugs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43393.  相似文献   

16.
A series of montmorillonite‐poly(ε‐caprolactone) nanocomposites were prepared according to a two‐stage procedure. In the first step Na‐type silicate clay was cation exchanged with protonated 12‐aminolauric acid. In the second step ε‐caprolactone was intercalated in the modified clay and ring‐opening polymerized. The clay content was varied regularly from 0 to 44 wt.‐%, with exfoliation of the silicate layers being detected by X‐ray diffraction in the nanocomposites dispersing up to at least 16 wt.‐% clay. Crystallization of poly(ε‐caprolactone) was not prevented in the nanocomposites, although it proceeded to a lower extent/order than in a homopolymer sample. The transport properties were investigated using water or dichloromethane as vapor permeants. In each case, a dual sorption behavior was observed as a function of the vapor activity because of the occurrence of different sorption mechanisms. The permeability of the nanocomposites to either permeant decreased with increasing clay content. In particular, the permeability behavior to water was largely dominated by the diffusion parameter.  相似文献   

17.
The main objective of this work has been to study the effects of copolymer microstructure, both chemical and physical, on the microporosity, in vitro hydrolytic degradability and biocompatibility of electrospun poly(l ‐lactide‐co‐ε‐caprolactone), PLC, copolymer tubes for potential use as absorbable nerve guides. PLC copolymers with L : C compositions of 50 : 50 and 67 : 33 mol % were synthesized via the ring‐opening copolymerization of l ‐lactide (L) and ε‐caprolactone (C) at 120°C for 72 h using stannous octoate (tin(II) 2‐ethylhexanoate) and n‐hexanol as the initiating system. Electrospinning was carried out from solution in a dichloromethane/dimethylformamide (7 : 3 v/v) mixed solvent at room temperature. The in vitro hydrolytic degradation of the electrospun PLC tubes was studied in phosphate buffer saline over a period of 36 weeks. The microporous tubes were found to be gradually degradable by a simple hydrolysis mechanism leading to random chain scission. At the end of the degradation period, the % weight retentions of the PLC 50 : 50 and 67 : 33 tubes were 15.6% and 70.2%, respectively. Pore stability during storage as well as cell attachment and proliferation of mouse fibroblast cells (L929) showed the greater potential of the PLC 67 : 33 tubes for use as temporary scaffolds in reconstructive nerve surgery. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4357–4366, 2013  相似文献   

18.
Well‐defined graft copolymers based on poly(ε‐caprolactone) (PCL) via poly(linoleic acid) (PLina), are derived from soybean oil. Poly(linoleic acid)‐g‐poly(ε‐caprolactone) (PLina‐g‐PCL) and poly(linoleic acid)‐g‐poly(styrene)‐g‐poly(ε‐caprolactone) (PLina‐g‐PSt‐g‐PCL) were synthesized by ring‐opening polymerization of ε‐caprolactone initiated by PLina and one‐pot synthesis of graft copolymers, and by ring‐opening polymerization and free radical polymerization by using PLina, respectively. PLina‐g‐PCL, PLina‐g‐PSt‐g‐PCL3, and PLina‐g‐PSt‐g‐PCL4 copolymers containing 96.97, 75.04 and 80.34 mol% CL, respectively, have been investigated regarding their enzymatic degradation properties in the presence of Pseudomonas lipase. In terms of weight loss, after 1 month, 51.5 % of PLina‐g‐PCL, 18.8 % of PLina‐g‐PSt‐g‐PCL3, and 38.4 % of PLina‐g‐PSt‐g‐PCL4 were degraded, leaving remaining copolymers with molecular weights of 16,140, 83,220 and 70,600 Da, respectively. Introducing the PLina unit into the copolymers greatly decreased the degradation rate. The molar ratio of [CL]/[Lina] dramatically decreased, from 21.3 to 8.4, after 30 days of incubation. Moreover, reduced PCL content in PLina‐g‐PSt‐g‐PCL copolymers decreased the degradation rate, probably due to the PSt enrichment within the structure, which blocks lipase contact with PCL units. Thus, copolymerization of PCL with PLina and PSt units leads to a controllable degradation profile, which encourages the use of these polymers as promising biomaterials for tissue engineering applications.  相似文献   

19.
Dibutylamine‐terminated ε‐caprolactone oligomers (CLOs: CLOL, CLOM, and CLOH) with number–averaged molecular weight (Mn), 500, 1300, and 2200, respectively, were synthesized by the ring‐opening polymerization of ε‐caprolactone initiated by 2‐(dibutylamino)ethanol in the presence of tin(II) 2‐ethylhexanoate. Nanocomposites based on poly(ε‐caploractone) (PCL) and the caprolactone oligomer‐treated montmorillonites (CLO‐Ms: CLOL‐M, CLOM‐M, and CLOH‐M) were prepared by melt intercalation method. The XRD and TEM analyses of the PCL composites revealed that the extent of exfoliation of the clay platelets increased with increasing molecular weight of the used CLOs. Tensile strength and modulus of the PCL/CLO‐M composites increased with increasing molecular weight of the CLO and increasing inorganic content. The tensile modulus of the PCL/CLOH‐M nanocomposite with inorganic content 5.0 wt % was three times higher than that of control PCL. Among the PCL/CLO‐M composites, the PCL/CLOM‐M composite had the highest crystallization temperature and melting temperature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
Three‐dimensional fluorinated pentablock poly(l ‐lactide‐co‐ε‐caprolactone)‐based scaffolds were successfully produced by the incorporation of thermally exfoliated graphene oxide (TEGO) as an antimicrobial agent with an electrospinning technique. In a ring‐opening polymerization, the fluorinated groups in the middle of polymer backbone were attached with a perfluorinated reactive stabilizer having oxygen‐carrying ability. The fiber diameter and its morphologies were optimized through changes in TEGO amount, voltage, polymer concentration, and solvent type to obtain an ideal scaffold structure. Instead of the widely used graphene oxide synthesized by Hummer's method, TEGO sheets having a low amount of oxygen produced by thermal expansion were integrated into the fiber structure to investigate the effect of the oxygen functional groups of TEGO sheets on the degradation and antimicrobial activity of the scaffolds. There was no antimicrobial activity in TEGO‐reinforced scaffolds in the in vitro tests in contrast to the literature. This study confirmed that a low number of oxygen functional groups on the surface of TEGO restricted the antimicrobial activity of the fabricated composite scaffolds. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43490.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号