共查询到20条相似文献,搜索用时 9 毫秒
1.
为了提升传统希尔伯特黄变换在处理复杂非平稳信号时的时频分析能力,本文将变分模态分解和希尔伯特变换进行结合,提出了一种时频分析方法变分模态分解和希尔伯特变换。此外,为了对变分模态分解的模态数进行自动调整,还提出了一种基于相关系数的希尔伯特黄变换参数优化方法,有效避免了由于希尔伯特黄变换模态数设置不合理而导致的信号分解不足和分解过剩的问题。利用转子故障信号对变分模态分解和希尔伯特变换方法的时频分析能力进行了验证,并且与传统希尔伯特黄变换的对比突出了该方法在处理非平稳信号中的优势。 相似文献
2.
小电流接地系统发生单相接地故障时,传统信号分解方法难以准确提取故障特征,而且单一选线判据不能适应所有工况,容易造成误判,导致选线准确率不高.针对上述问题,文中提出一种基于参数寻优的改进变分模态分解和信息融合技术的故障选线方法.利用参数寻优变分模态分解的优良信号分解性能,将暂态零序电流准确分解为衰减直流、工频交流和高频振荡3个分量.通过融合工频分量综合相关系数和所有分量的相对能量系数两种判据,构造可靠性更高的综合选线判据.针对母线故障时,仅凭综合相关系数阈值来区分母线故障和线路故障存在主观性的问题,在综合相关系数基础上提出了工频分量极性比较法的辅助选线方法.该方法结合了三种选线判据,有效改善了单一判据选线准确率不高的问题.采用Simulink搭建10 kV配电网故障选线模型,仿真结果表明该方法不受中性点接地方式、接地电阻、故障初始角、故障位置的影响,具有较高选线准确率. 相似文献
3.
设备运转的状态信息能够通过振动信号实时反映出来,然而由于信号中混杂了大量背景噪声等干扰信息,使得信号分解技术成为关注的重点之一。变分模态分解(variational mode decomposition,VMD)克服了传统自适应信号分解方法的不足,分解出的信号消除了端点效应和模态混叠等失真现象,具有抗噪干扰能力强、计算速度快等优点。针对VMD模态K数难以选取的问题,以信号主频率个数作为K的选择依据,然后结合信息熵测度,提出了一种的新的振动信号提取方法,剔除干扰信息,便于故障类型的查找。仿真和轴承实验表明了该方法的有效性和可行性。 相似文献
4.
针对电力系统多元非线性信号模态辨识困难的问题,提出一种自适应多元变分模态分解方法(自适应MVMD)对多元低频振荡信号进行辨识.自适应MVMD法通过对构建的多元约束变分模型迭代求解获得最优分离模态集合,避免了噪声扰动下的模态混叠及虚假模态等问题.首先通过最大复原近似度确定分离模态数K,然后利用自适应多元变分模态分解法对多元信号进行辨识以获得模态集合,对各信号中同频模态分类提取,并利用Hilbert变换以及傅里叶变换频谱分布对振荡参数进行辨识.测试算例及仿真算例证明了该方法的有效性,与经验模态分解法对比结果显示自适应MVMD法对含噪声信号辨识能力更强. 相似文献
5.
《浙江大学学报(工学版)》2020,(6)
为了在睡眠时以非侵入方式监测心冲击信号(BCG)和呼吸信号,使用电阻式薄膜压力传感器嵌入床垫中,将变分模态分解(VMD)算法引入到二维生理信号提取过程.信号经床垫中的柔性压力传感器,通过硬件低通滤波、数字去趋势(DFA)后,利用VMD算法分解出生理信号中心冲击信号与呼吸信号的潜在分量,通过自适应选取有效分量重构BCG信号与呼吸信号.基于Hilbert变换,对比VMD、经验模态分解(EMD)、互补集合经验模态分解(CEEMD)分量的瞬时频率. VMD在0~3.0 Hz内的混叠情况相对于EMD与CEEMD得到改善.采用BlandAltman法,对标准结果和实验重构结果进行一致性评价.结果表明,利用VMD法所得BCG与呼吸信号分别有93.75%和92.5%的点在95%一致性标准界限内,有较高的一致性. 相似文献
6.
为了在睡眠时以非侵入方式监测心冲击信号(BCG)和呼吸信号,使用电阻式薄膜压力传感器嵌入床垫中,将变分模态分解(VMD)算法引入到二维生理信号提取过程. 信号经床垫中的柔性压力传感器,通过硬件低通滤波、数字去趋势(DFA)后,利用VMD算法分解出生理信号中心冲击信号与呼吸信号的潜在分量,通过自适应选取有效分量重构BCG信号与呼吸信号. 基于Hilbert变换,对比VMD、经验模态分解(EMD)、互补集合经验模态分解(CEEMD)分量的瞬时频率. VMD在0~3.0 Hz内的混叠情况相对于EMD与CEEMD得到改善. 采用Bland-Altman法,对标准结果和实验重构结果进行一致性评价. 结果表明,利用VMD法所得BCG与呼吸信号分别有93.75%和92.5%的点在95%一致性标准界限内,有较高的一致性. 相似文献
7.
为有效抑制局部放电信号中的复杂噪声干扰,提出一种基于变分模态分解和奇异值分解的去噪方法。首先通过泄露能量确定VMD算法中的模态分解个数,对局部放电信号进行分解,得到数个有限带宽的固有模态分量;然后基于峭度指标选择包含有用信息的分量进行信号重构,将周期性窄带干扰去除;最后采用奇异值分解去噪方法抑制信号中剩余的高斯白噪声。运用该方法对含噪局放信号进行去噪处理,并通过时变峰度法对信号初至时刻进行拾取。与传统的小波方法和经验模态分解算法进行对比,该方法能有效抑制局放信号的复杂噪声干扰,去噪后信号波形畸变较小,信号拾取精度较高。 相似文献
8.
《哈尔滨工程大学学报》2021,42(10)
轴承是核电厂旋转机械的重要支撑部件,为了提高轴承早期故障的检测能力,本文提出了一种基于人工蜂群优化的参数自适应变分模态分解故障特征提取方法。利用峭度和相关系数构建加权峭度指标;以最大加权峭度指标为目标函数,利用人工蜂群算法对变分模态分解过程中的模态数和带宽控制参数进行优化,获取最优参数组合并对轴承振动信号进行模态分解;对加权峭度指标最大的敏感模态分量进行包络谱分析并识别故障频率。通过仿真与实验验证了该方法的有效性,并通过与集成经验模态分解、局部均值分解和固定参数变分模态分解的特征提取效果进行比较,突出了该方法在轴承早期故障诊断中的优势。 相似文献
9.
针对滚动轴承多故障诊断中特征提取困难和分类准确性低的问题,从有效特征提取和故障分类准确性两方面出发,将变分模态分解(VMD)和极限学习机(ELM)方法结合,提出了一种自适应滚动轴承多故障诊断方法.针对VMD参数需人为事先设定导致信号分解效果差的情况,提出了灰狼算法(GWO)优化VMD实现自适应地获取最佳分解参数k和α.... 相似文献
10.
针对磁瓦内部缺陷声振检测存在的信号处理和特征识别问题,提出结合变分模态分解(VMD)、粒子群优化(PSO)和随机森林(RF)的信号分析方法. 该方法以模态能量和相邻模态中心频率差值构建代表VMD处理性能的适应度函数,其中以VMD的分解层数和惩罚因子2个参数作为该适应度函数的变量;通过PSO在VMD参数选择空间中搜索该函数的最小值以执行VMD的参数优化,最小值所对应的参数设置即为VMD的最优参数;利用得到的参数实现信号的最优VMD分解并通过计算模态分量的能量来筛选特征模态,从中提取过零率、谱质心和最大峰值频点以联合反映磁瓦内部缺陷的特征信息;经RF分类器对这些特征进行识别进而对内部缺陷的存在情况做出判断. 实验证明所提出的方法能够准确、高效地实现不同类型磁瓦的内部缺陷检测. 相似文献
11.
针对多个辐射源信号混合构成的多分量信号分离问题,提出基于脊路跟踪的变分非线性调频模态分解算法. 该方法使用改进的脊路重组算法对时频分布图中各分量瞬时频率进行提取,将提取出的各分量瞬时频率作为变分非线性调频模态分解的预设频率;利用重构后的多分量信号进行瞬时频率提取,更新预设频率后继续模态分解;重复上述过程,直到迭代前、后频率差值小于预设阈值,输出对应的模态分解结果. 实验结果表明,基于脊路跟踪的变分非线性调频模态分解算法比经典变分非线性调频模态分解算法具有更好的多分量信号分离效果. 相似文献
12.
针对高铁隧道口边坡位移监测数据非平稳、非线性的特点,以及极限学习机(ELM)模型起始参数随机生成导致预测性能不佳等问题,建立了基于变分模态分解(VMD)和灰狼优化算法(GWO)的ELM位移预测模型VMD-GWO-ELM。首先,通过经验模态分解的自适应分解层数确定VMD的最佳分解数k,得到周期项、趋势项和波动项位移。然后,利用灰狼算法优化ELM的输入权值和隐含神经元阈值。最后,对各子序列进行预测和叠加。实例验证结果表明:本文模型的均方根误差为0.3822 mm,平均绝对百分比误差为1.0047%,拟合优度为0.9837,表明该模型具有更高的预测精度及适用性。 相似文献
13.
针对滚动轴承故障振动信号具有非平稳、非线性特征以及提取特征困难等问题,提出一种基于变分模态分解(Variational Mode Decomposition,VMD)的多尺度熵(Multi-scale entropy,MSE)的特征向量提取方法,并输入拉普拉斯支持向量机(Laplacian support vector machines,LapSVM)中进行滚动轴承故障识别。该方法首先利用VMD分解的多尺度熵对原始振动信号进行特征向量的提取,然后与基于VMD样本熵以及VMD时域统计量(峭度、歪度)对比说明该方法的优势,最后将上述特征向量输入到LapSVM分类器中进行识别对比。试验数据分析结果表明,所提方法在诊断精度、计算速度上大大提高。 相似文献
14.
15.
图像哈希是通过将图像提取为简短数列,从而快速地从图库中区分出与原图相似或不同图像的方法。利用奇异值分解(SVD)来分解重构减小图像信息的冗余性和二维变分模态分解(2D-VMD)可以将图像分解成一系列不同中心频率的子模态的特性,从时域和频域提取出图像的主要信息序列来构成哈希。仿真结果表明,相比于其他方法,通过SVD和2D-VMD的紧凑图像哈希算法具有较短的运行时间、较好的鲁棒性和唯一性。 相似文献
16.
《华北电力大学学报(自然科学版)》2016,(6)
局部放电类型的识别对准确掌握变压器绝缘状态和合理安排检修维护有着重要的指导意义。识别放电类型的关键在于放电特征的提取。针对目前局部放电特征识别稳定性差,识别率低的问题,提出了一种基于变分模态分解(Variational Mode Decomposition,VMD)和多尺度排列熵(Multi-scale permutation entropy,MPE)的特征提取方法,并验证了方法的有效性。利用VMD分解算法对实验室条件下采集的4种局部放电信号进行分解,得到数个包含不同频带信息的有限带宽的固有模态分量(band-limited intrinsic mode functions,BLIMFs),分别计算相应的多尺度排列熵,并将其组合成原始特征量。在此基础之上,利用最大相关最小冗余准则(max-relevance and min-redundancy criteria,mRMR)对原始特征量进行优选降维,最后使用支持向量机分类器实现分类。实验结果表明:在染噪情况下,该方法提取的多尺度排列熵仍能准确刻画不同的放电信号时频复杂度的差异,鲁棒性强,识别率高。 相似文献
17.
18.
基于奇异值分解和小波分析的结构模态参数识别 总被引:1,自引:0,他引:1
提出了一种新的基于奇异值分解(SVD)和小波分析的结构模态参数识别方法。获得结构在随机荷载作用下的加速度响应,对其进行相关分析可得到相关系数矩阵。将小波变换用于分解相关系数矩阵可得到小波系数矩阵,用奇异值分解小波系数矩阵可精确地识别出模态参数。通过数值算例和实际测试获得的结构信号验证了该方法的可行性。研究结果表明SVD方法与小波分析的结合能够方便准确地寻找出结构的小波脊,其获得的信息可靠度也更高,适用于多自由度结构的模态参数识别。 相似文献
19.
为解决电子微结构图像在摄取、传输或存储的过程中易被外界噪声干扰、图像保真度差的问题,提出了一种变分模态分解与稀疏Stein无偏风险估计(Stein unbiased risk estimator,SURE)相结合的图像噪声抑制方法,以铝合金、双相钢与钛合金Ti6Al4V 3种材料的电子背散射衍射图像为例.首先,在已采集的电子背散射衍射图像中加入高斯噪声与Speckle斑纹噪声来模拟被干扰图像;然后,利用变分模态分解方法按照频率尺度将含噪模拟图像分解为固有特征成分与高频噪声成分;继而利用Haar小波冗余字典对固有特征成分进行稀疏表示,在一阶可导收缩函数的基础上推导了稀疏Stein无偏风险估计阈值选择的优化目标函数,最后,利用黄金分割搜索法计算得到全局最佳自适应阈值.结果表明:提出的方法可有效去除外界干扰噪声,提高了图像的峰值信噪比;以铝合金为例,当噪声标准差为30时,提出方法的图像峰值信噪比突破了单一稀疏SURE收缩曲线的最大值,比Neigh-Shrink方法高0.39 dB,比KSVD方法高2.895 dB,比小波阈值去噪算法高3.07 dB. 相似文献
20.
针对表面肌电信号易受无关噪声影响的问题,分别利用变分模态分解(Variational Mode Decomposition,VMD)、小波阈值法、VMD与小波阈值结合的方法对表面肌电信号进行伪迹去除。将信噪比、均方误差、自相关系数作为评价指标,对3种去噪方法进行对比分析。比较结果表明:3种方法对噪声信号均具有分离效果,但VMD与小波阈值相结合的方法分离效果更好、稳定性更高、信噪比最大、均方误差最小、自相关系数最高,具有良好的应用前景。 相似文献