首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
进行了再生废砖粗骨料混凝土基本力学性能的试验,主要研究了与普通混凝土强度等级相同条件下再生废砖粗骨料混凝土的立方体抗压强度、轴心抗压强度、劈裂抗拉强度、弹性模量。试验结果表明:再生砖粗骨料混凝土的立方体抗压强度、轴心抗压强度、劈裂抗拉强度、弹性模量均要低于普通混凝土,其主要原因可能为再生砖粗骨料强度较低;再生砖粗骨料混凝土的立方体抗压强度、轴心抗压强度和劈裂抗拉强度与普通混凝土的破坏形式相类似。  相似文献   

2.
通过制备预期强度为C30~C50的不同再生骨料取代率的海水海砂再生混凝土和普通再生混凝土试件,对再生混凝土在不同再生骨料取代率下的力学性能进行研究,并对海水海砂再生混凝土和普通再生混凝土试件进行抗压强度和弹性模量试验,试验结果表明:海水和海砂配制出来的再生混凝土具有较好的力学性能,可以认为和普通混凝土大致相同。其中再生混凝土的轴心抗压强度和立方体抗压强度与海水海砂普通混凝土相比,强度相差不大。而海水海砂再生混凝土的弹性模量与海水海砂普通混凝土相比有略微降低,降低幅度约为6%~10%。  相似文献   

3.
《四川建材》2016,(1):12-13
本实验目的是研究再生粗骨料取代原来混凝土中石子的含量后对混凝土力学性能的影响,再生粗骨料的来源为废弃混凝土。将其按要求压碎后以0~100%的取代率(中间级差为10%)取代原混凝土中的石子含量,得到11种再生混凝土。在每种取代率的混凝土下制作3个标准混凝土立方体试块(150 mm×150 mm×150 mm),3个标准混凝土棱柱体试块(150 mm×150 mm×300 mm),3个尺寸为150 mm×150 mm×550 mm试件共得到33个标准混凝土立方体试块,33个标准混凝土棱柱体试块,33个150 mm×150 mm×550 mm试件。然后按照标准试验方法进行力学性能试验。通过实验测得不同再生粗骨料取代率下再生混凝土的立方体抗压强度、轴心抗压强度、抗折强度、应力应变变化曲线、弹性模量等力学性能指标之间的关系。实验结果表明:当粗骨料取代率不断增加后,再生混凝土立方体抗压强度与轴心抗压强度呈现不断上升趋势,抗折强度呈现先上升后降低趋势,而弹性模量总体呈现下降趋势。综合考虑再生混凝土基本力学性能指标和经济性能指标,建议以30%~40%作为再生混凝土的最优取代率。  相似文献   

4.
吴洪梅    申波    刘凯    卢亚琴    杨方 《建筑科学与工程学报》2023,(1):28-37
利用DIGIMAT和ABAQUS联合建立细观混凝土2D随机骨料模型,模拟了粗骨料的分布、形状、含量以及界面过渡区性能、孔隙率对C80高强度混凝土立方体抗压强度、轴心抗压强度、弹性模量和劈裂抗拉强度的影响,并将模拟结果与各参数对低强度混凝土的影响进行比较。结果表明:粗骨料的分布模式对混凝土的基本力学性能几乎没有影响,不同分布形式下混凝土立方体抗压强度最大相对误差为4.18%; 不同形状的粗骨料对混凝土力学性能有着不同的影响,圆形和椭圆形状粗骨料的模拟结果与试验值更为接近; 不同骨料含量下混凝土立方体抗压强度呈现出先减小后增大的趋势,轴心抗压强度则是先减小后增加再减小,劈裂抗拉强度在粗骨料含量为33%时达到最大值4.61 MPa,之后便逐渐降低; 随着孔隙率的增加,混凝土立方体抗压强度、轴心抗压强度和弹性模量均逐渐减小,劈裂抗拉强度在孔隙率为1.5%时降低较多,孔隙率为2%时有所上升。  相似文献   

5.
本实验研究基于C30混凝土在粗骨料取代率为50%下掺入不同种类的纤维后,再生混凝土的主要力学性能。选择掺入的纤维有钢纤维、玻璃纤维、聚丙烯纤维。再生粗骨料选择龄期为40年的废弃建筑物混凝土。制作粗骨料取代率为50%再生混凝土标准土立方体试块(150 mm×150 mm×150 mm),标准棱柱体试块(150 mm×150 mm×300 mm),尺寸为150 mm×150 mm×550 mm试块。每种尺寸下制作3组试块。在三种试块的制备过程中分别加入钢纤维、玻璃纤维、聚丙烯纤维,观察其流动性、塌落度、保水性。入模后按混凝土标准实验的养护方法放置于养护室中养护28 d后测试其抗压强度、抗折强度、劈裂抗拉强度。对所得结论进行比较分析后得知在相同粗骨料取代率下对于掺入不同纤维的再生混凝土,其表现出了不同的物理力学性能。对于掺入钢纤维的,再生混凝土流动性降低、塌落度增大、保水性变差,但强度及抗折强度有所增加,劈裂抗拉强度无明显变化。对于掺入玻璃纤维的再生混凝土其流动性小幅增强、坍落度小幅减小、保水性基本不变,而抗压强度、抗折强度、劈裂抗拉强度均有一定的增强。对于掺入聚丙烯纤维的再生混凝土,其流动性增强,塌落度减小而抗压强度、抗折强度、劈裂抗拉强度均有一定的降低。对于上述结论可知,掺入玻璃纤维的再生混凝土相对来说性能更优越,建议选择该种混凝土进行推广。  相似文献   

6.
制备了强度等级为C30、C50和C70的海水海砂钢纤维混凝土试件,通过180个标准立方体和72个棱柱体试件,完成了工作性、立方体抗压强度、轴心抗压强度、劈裂抗拉强度以及弹性模量试验,得到了基于两种规范模式下海水海砂钢纤维混凝土的弹性模量与立方体抗压强度的关系公式。结果表明,海水海砂能够配置成工作性良好的高强混凝土,钢纤维有利于提升混凝土拌合物的流动性。对于混凝土抗压强度、轴心抗压强度、劈裂抗拉强度和弹性模量四个指标,海水海砂混凝土均略低于普通混凝土,且随着混凝土强度等级的提高,差距逐渐减小,此外,随着钢纤维体积掺量的增加,上述指标值均逐渐增大。海水海砂混凝土的弹性模量与抗压强度关系模型与试验数据吻合较好,且具有一定安全储备,可供沿海、海岛土木加固工程借鉴。  相似文献   

7.
对高性能天然和再生骨料混凝土进行了基本力学性能试验,测得了其立方体抗压强度、棱柱体轴心抗压强度、抗拉强度、弹性模量。试验结果表明:高性能再生骨料混凝土的上述四个力学性能指标数值均小于天然的,而且抗拉强度和弹性模量降低幅度更大;随强度等级提高,棱柱体轴心抗压强度和抗拉强度与立方体抗压强度之比却是逐渐增大,其脆性也就越大。建立了高性能混凝土与高性能再生混凝土弹性模量与立方体抗压强度之间的公式。  相似文献   

8.
再生粗骨料含量对再生混凝土力学性能的影响分析   总被引:1,自引:0,他引:1  
为了研究再生粗骨料取代率对再生混凝土力学性能的影响,利用废弃混凝土为再生粗骨料来源,研究取代率从0%至100%变化,中间级差为10%的11种再生混凝土,制作了33个标准立方体、33个标准棱柱体和33个尺寸为150 mm×150 mm×550 mm的棱柱体再生混凝土试件,依标准试验方法进行力学性能测试。通过试验,获取了再生混凝土取代率与立方体抗压强度、轴心抗压强度、抗折强度、应变延性系数、耗能系数、割线刚度和损伤度等力学性能指标之间的关系。研究结果表明:随着再生粗骨料取代率的增加,再生混凝土立方体抗压强度和轴心抗压强度总体呈现增长的趋势;抗折强度呈现先增长后减小的趋势;弹性模量总体呈现减小的趋势;延性系数、耗能系数、割线刚度总体均呈现减小的趋势但减小幅度较小;再生混凝土的刚度退化和损伤累积过程与天然混凝土较为一致。综合考虑再生混凝土基本力学性能指标和经济性能指标,建议以30%~40%作为再生混凝土的最优取代率。  相似文献   

9.
试验中配制了不同水灰比、粗骨料取代率、细骨料取代率的再生混凝土,对其进行了基本力学性能试验,测试了立方体抗压强度、轴心抗压强度、劈裂抗拉强度,考察了受压破坏过程与破坏形态,分析了再生粗、细骨料、水灰比对再生混凝土破坏形态及抗压强度等的影响。试验结果表明:再生粗骨料、细骨料配制的再生混凝土的破坏形态与普通混凝土破坏形态相似;再生混凝土的抗压强度随着水灰比、再生粗、细骨料取代率的增大而降低;当再生粗骨料取代率大于75%时,再生混凝土抗压强度较普通混凝土有显著下降;当再生细骨料取代率小于30%时,再生细骨料对再生混凝土抗压强度的影响很小;当再生混凝土完全使用再生粗、细骨料时,各水灰比下再生混凝土抗压强度较普通混凝土下降了36%~42%;通过回归分析,提出了再生混凝土劈裂抗拉强度及轴心抗压强度与立方体抗压强度的换算公式。  相似文献   

10.
《混凝土》2016,(8)
为了确定C35玻化微珠保温混凝土在国内外标准下基本力学性能的差异,参考ASTM规范,对玻化微珠保温混凝土标准圆柱体试块抗压强度、圆柱体劈裂抗拉强度以及圆柱体静力受压弹性模量进行试验研究。结果表明:C35玻化微珠保温混凝土150 mm×150 mm×150 mm立方体试块抗压强度是35.6 MPa,Φ150 mm×300 mm圆柱体试块抗压强度是28.5 MPa,立方体抗压强度与圆柱体抗压强度的比值是0.8;Φ150 mm×300 mm圆柱体劈裂抗拉强度是2.82 MPa,比150 mm×150 mm×150 mm立方体劈裂抗拉强度低9.62%;Φ150 mm×300 mm圆柱体静力受压弹性模量是2.04×104MPa,比150 mm×150 mm×300 mm棱柱体弹性模量提高了1.5%。  相似文献   

11.
再生混凝土的基本性能研究   总被引:1,自引:0,他引:1  
设计并完成了在掺与不掺减水剂两种配合比下,再生粗骨料取代率分别为0、30%、50%、100%的再生混凝土的和易性、立方体抗压强度、棱柱体抗压强度的相关试验,并以天然骨料混凝土作为基准进行了对比分析。试验结果表明,粗骨料取代率对混凝土的流动性、粘聚性与保水性有不同的影响,适量的减水剂可以增强混凝土的流动性;在水灰比相同的情况下,再生粗骨料取代率为30%时再生混凝土立方体抗压强度和轴心抗压强度都高于普通混凝土;再生混凝土的抗压强度随龄期的发展和普通混凝土比较相近。  相似文献   

12.
正交法分析再生粗骨料混凝土的基本性能   总被引:3,自引:0,他引:3  
采用正交法试验分析了再生粗骨料掺量、聚丙烯纤维掺量和引气减水剂掺量3个配合比因素对再生混凝土抗压强度、劈拉强度和抗压弹模的影响,用再生粗骨料掺量为70%、聚丙烯纤维掺量为O.7%和引气减水剂掺量为0.2%的参数进行配合比设计,可使设计强度为C30的再生混凝土获得良好的和易性和较高的强度.通过对混凝土拌合物含气量的测定,分析得出了随着引气减水剂掺量的增加,含气量增加1%时,再生混凝土的抗压强度降低4.1%,劈拉强度降低7.7%,抗压弹模降低3.9%.将再生粗骨料经机械强化后,可使再生混凝土的抗压强度提高约13%.结果表明:引气减水剂和再生粗骨料掺量是影响这3个力学性能的重要因素.  相似文献   

13.
基于再生粗骨料吸附砂浆定量分析及文献数据,研究吸附砂浆含量变化与再生粗骨料物理性能之间的关系,以及再生粗骨料取代率为100%的再生混凝土在不同吸附砂浆含量下的力学性能演化规律;以吸附砂浆含量为自变量、力学性能为因变量、目标强度为限值,利用数学方法确定吸附砂浆界限含量.研究发现:随着吸附砂浆含量的增加,再生粗骨料的物理性...  相似文献   

14.
采用相同砂浆体积(EMV)方法配制再生粗集料混凝土,可节省水泥及细集料的用量,其强度及弹性模量与对比天然集料混凝土(NAC)相近,但由于新拌砂浆含量小而使其流动性能变差.给出了EMV方法的改进方法及具体设计步骤,并应用该改进方法配制2种不同来源再生粗集料的大流动性再生粗集料混凝土(FRAC),测定其坍落度、干湿表观密度、立方体抗压强度、轴心抗压强度、劈裂抗拉强度以及弹性模量.结果表明:采用改进EMV方法可配制出满足和易性要求的FRAC,而且与传统方法配制的FRAC相比,其各项性能指标更接近对比NAC.  相似文献   

15.
不同取代率再生粗骨料混凝土的力学性能   总被引:3,自引:0,他引:3  
胡敏萍 《混凝土》2007,(2):52-54
系统研究了坍落度相同的情况下再生粗骨料取代率对混凝土基本性能的影响.试验中再生粗骨料的掺入量分别为0,30%,50%,70%和100%,通过调节用水量使各组混凝土达到相同的坍落度.主要研究了达到相同坍落度时混凝土的用水量以及再生粗骨料取代率对混凝土坍落度、立方体抗压强度、棱柱体抗压强度、峰值应变和泊松比、弹性模量、劈裂抗拉强度以及抗折强度的影响.试验结果表明,再生粗骨料取代率对上述各性能指标均有一定影响,但程度不同.同时发现,除劈裂抗拉强度和抗折强度外,普通混凝土各基本力学性能指标间的关系不适用各种再生骨料取代率的混凝土.  相似文献   

16.
再生粗骨料取代率对混凝土基本性能的影响   总被引:6,自引:2,他引:6  
徐蔚 《混凝土》2006,(9):45-47
系统研究了相同水灰比情况下再生粗骨料取代率对混凝土基本性能的影响。试验中再生粗骨料取代率分别为0,30%,50%,70%和100%,保持混凝土的水灰比不变。主要研究了再生粗骨料取代率对混凝土立方体坍落度、抗压强度、棱柱体抗压强度、峰值应变和泊松比、弹性模量、劈裂抗拉强度以及抗折强度的影响。试验结果表明,再生粗骨料取代率对上述各性能指标均有一定影响,但程度不同。同时发现,除抗折强度外,普通混凝土各基本力学性能指标问的关系均不适用各种再生骨料取代率混凝土。  相似文献   

17.
研究5~10 mm小粒径再生粗骨料对预制混凝土抗压强度、劈裂抗拉强度和弹性模量的影响。结果表明,抗压强度随龄期延长而提高,且主要发生在前7 d,7 d抗压强度达到其28 d抗压强度的77%;劈裂抗拉强度随龄期的延长而提高,3 d劈裂抗拉强度达到其28 d强度的64%;弹性模量也随龄期的延长而提高,龄期为1、3、7和14 d时,弹性模量分别为其28 d弹性模量的32%、46%、62%和91%。通过与欧洲规范对比,基于试验结果,建议了劈裂抗拉强度和弹性模量的计算模型。研究结果更好的实现再生混凝土在小截面预制混凝土构件上的工程应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号