首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
以福建永春县上坂大桥作为工程背景建立了全桥有限元模型,通过实桥静载、动载试验对模型进行验证,并在整体式桥台下分别设置了矩形桩、圆形桩、预应力高强混凝土(PHC)管桩、钢管桩、H型钢桩、工型超高性能混凝土(UHPC)桩和工型UHPC-矩形变截面桩,研究了整体桥采用不同类型桩基时对其整体力学性能的影响。结果表明:有限元模型的计算基频较实测值减小了5.5%,第1阶模态均为横向侧飘,主梁在汽车偏载和中载作用下出现的竖向挠度与实测挠度较吻合,验证了有限元模型的合理性; 随着整体温度的升高,不同类型桩基支撑的整体桥主梁和桩基最大正、负弯矩和剪力随之增大,主梁竖向挠度随之减小,梁端水平位移也呈现明显的增长趋势,但在相同温度荷载作用下,整体式桥台下设置不同类型桩基对梁端水平位移的影响很小; 桩身显著变形区主要出现在0~6.4D(D为桩径)埋深处,在更大埋深处基本可忽略,表现出了柔性桩的变形性能; 随着变截面桩的上部UHPC桩段抗弯刚度的增大,主梁最大正、负弯矩与桩身最大弯矩均显著增大,桩顶水平变形显著减小; 随着上部UHPC桩段长度的增加,主梁最大正、负弯矩与桩身最大弯矩先呈现明显的增长趋势,而后趋于稳定,桩顶水平变形则先呈现明显减小趋势,随后趋于稳定; 上部UHPC桩段长度一般取为桩基总长的36%,对整体桥主梁和桩基的受力较好,为UHPC桩段的经济长度; 温差小于15 ℃时,整体桥采用不同类型桩基时对主梁和桩基的受力影响不大; 随着温差继续增大,整体桥采用H型钢桩、工型UHPC桩或工型UHPC-矩形变截面桩时主梁和桩基的受力性能更好。  相似文献   

2.
以福建某大桥为工程背景,为一座预应力混凝土整体桥,采用Midas Civil 2015建立了该整体桥与连续梁桥的3D有限元模型,以研究整体桥与连续梁桥的受力差异。分析了恒载、汽车偏载和中载与温度等荷载作用对整体桥和连续梁桥的主梁弯矩、剪力和竖向挠度的影响。研究结果表现,在恒载作用下会引起整体桥主梁端部较小的负弯矩,对主梁剪力和竖向挠度的影响与连续梁桥相近;汽车偏载和中载均会引起整体桥主梁端部很大的负弯矩,使其边跨主梁内的正弯矩值大大减小,且汽车偏载对整体桥主梁受力的影响明显大于汽车中载;在温度荷载作用下,整体桥主梁内会引起很大的附加内力,在设计中需引起重视。此外,整体桥的振动频率远大于连续梁桥,尤其是基频,凸显了整体桥更大的全桥刚度;在地震作用下,整体桥可有效防止主梁落梁的发生,相比连续梁桥,整体桥具有更好的抗震性能,但也需注意防止墩顶限位挡块的破坏。  相似文献   

3.
在台后填土作用下整体式桥台-H型钢桩-土相互作用和大不平衡土压力下(台后土表面均布荷载增大了3.81 kPa)整体式桥台-H型钢桩-土相互作用拟静力试验研究的基础上,提出了考虑台后不平衡土压力下整体桥桩基-土相互作用的内力计算方法,计算了整体桥台底弯矩和剪力以及桩身弯矩和剪力,并与现有的台后土压力理论和桥梁规范的计算值进行比较。结果表明:正向加载时,采用现有的台后土压力理论和桥梁规范计算得到的台底弯矩和剪力以及桩身弯矩和剪力均与试验结果存在较大偏差; 采用黄-林法可较准确地计算AHP模型的台底弯矩和剪力以及桩身弯矩和剪力; 对于LAHP模型,试验值均与各理论计算值相差较大; 正向加载时,随着位移荷载的增加,AHP和LAHP模型的台底和桩身弯矩均逐渐增大; 台后堆载(大不平衡土压力)对整体桥台底剪力和弯矩以及桩身的剪力和弯矩产生较大的影响,LAHP模型的台底和桩身弯矩整体上均大于AHP模型的,而LAHP模型的台底剪力小于AHP模型的,桩身剪力大于AHP模型的。  相似文献   

4.
以某实桥为工程背景,进行整体式弯桥的试设计和设计验算。采用MIDAS/Civil2015有限元软件分别建立了原桥和整体式弯桥的3D有限元模型,后者考虑了台-土及桩-土相互作用。对比分析了两者在恒载、活载(汽车荷载)、温度荷载、混凝土收缩以及地震等荷载作用下的受力性能。结果表明:由于梁端固接和台后土压力等影响,恒载、活载、温度及混凝土收缩等荷载作用下,整体式弯桥梁端具有较大的负弯矩; 整体式弯桥在恒载作用下的主梁弯矩值较原桥均匀,而在活载作用下主梁弯矩值与原桥相近; 温度荷载对整体式弯桥的主梁内力影响最大,其次为混凝土收缩效应,在设计中应引起重视; 在恒载、活载作用下,整体式弯桥和原桥的主梁扭矩基本呈反对称分布,且恒载下的主梁边跨扭矩显著小于原桥,而在活载下两者的主梁扭矩相差不大,整体式弯桥表现出较优的抗扭性能; 此外,整体式弯桥的抗震性能明显优于原桥,可有效避免主梁在地震中的侧向偏位和落梁等现象,在高震区使用更具优势。  相似文献   

5.
为研究竖向-水平组合荷载作用下桩筏基础的受力特性,开展了室内模型试验,考虑桩长、桩数、竖向荷载及桩间距对桩筏基础承载性能的影响,并分析了桩身弯矩、剪力及桩侧土压力的变化规律。试验结果表明:桩筏基础的水平承载力随着竖向荷载、桩数、桩长、桩间距的增大而增大,水平位移相应减小;桩身最大弯矩位于0.3倍桩长处,且前桩桩身最大弯矩较大,约为后桩的1.14倍;桩身弯矩及剪力均随着竖向荷载的增大而减小,桩身最大弯矩随着桩间距的增大而减小,但桩顶及桩端弯矩几乎保持不变;增大桩间距可以调整最大负剪力位置,桩顶剪力随桩间距的增大而减小,而桩端剪力值则随桩间距增大而增大;增大桩间距可以带动更大范围的桩间土,桩身内力分布规律保持相同且变化值较小;桩筏基础受组合荷载作用下的破坏模式符合刚性桩破坏规律,桩身水平极限承载力主要由桩侧土体的抗压强度控制。  相似文献   

6.
桩侧堆载作用下被动桩受力性状研究   总被引:4,自引:0,他引:4  
桩周大面积堆载产生的土体变形不仅会引起桩身负摩阻力,也会使桩基承受较大的侧向荷载。文章应用三维有限元方法对桩侧堆载作用下的被动桩受力性状进行了分析,并研究了桩顶荷载对被动桩受力变形的影响。在桩侧堆载的作用下,桩身产生了较大的侧向位移与弯矩,同时出现负摩阻力和桩身轴力。桩身侧移和桩身轴力随着堆载距离的增加而减小,随着堆载量的增加而增大。桩侧堆载的被动桩在桩顶竖向荷载作用下会产生桩身二次弯矩,加剧桩身弯曲变形和内力。  相似文献   

7.
以福建某简支梁桥为研究背景(该桥在实际工程中已被改造为半刚性整体桥),采用MIDAS/Civil软件将原简支梁桥改造为整体桥、半整体桥与延伸桥面板桥,分别建立了5座桥的全桥有限元模型,分析了它们在地震荷载下的受力差异。结果表明:简支梁桥在地震荷载作用下易引起主梁在桥台处的落梁现象,而无缝桥可有效防止该现象的发生,其中的整体桥表现出更优的抗震性能,更适用于强震区; 在地震荷载作用下,无缝桥与简支梁桥的桩基有效作用长度均在0~10D(D为桩径)埋深范围; 整体桥桩基在大震作用下的受力性能较好,可更好地保护桩基不被破坏; 延伸桥面板桥与传统简支梁桥台底桩身受力相近,其设计可参考现行有缝桥设计规范; 无缝桥与传统简支梁桥的墩底弯矩均最大,在该处易形成塑性铰; 纵桥向地震荷载作用下,简支梁桥与延伸桥面板桥的主梁受力最不利位置分别出现在跨中与墩顶处,而整体桥、半刚性整体桥与半整体桥出现在台顶处,其受力不利部位在设计中应引起重视; 该研究结果可为无缝桥的设计计算与相关规范的制定提供参考。  相似文献   

8.
针对混凝土徐变易引起钢-混组合连续梁桥负弯矩区混凝土桥面板开裂问题,运用Midas/Civil建立6×85m港珠澳大桥钢-混组合连续梁桥有限元模型,分析负弯矩区混凝土桥面板徐变对主梁结构影响的规律。结果表明:混凝土徐变作用下,成桥前3年负弯矩区混凝土桥面板压应力下降较快,10年时最大压应力为-3.2 MPa;成桥10年边跨主梁最大挠度为-17.67mm,其中前3年主梁变形达到93.04%。说明徐变对港珠澳大桥钢-混组合梁桥成桥前3年影响最为显著,成桥10年内负弯矩区混凝土桥面板一直处于受压状态。  相似文献   

9.
岷江3号桥遭遇2008年“5.12”8级强烈地震,又面临令人震撼的严重冲刷。为了弄清楚该桥实际工况,按照实际桥梁墩桩的1:20模型,采用小型振动台试验的方法,分析在不同冲刷深度、不同地震波作用下桥梁墩桩的抗震性能。试验结果表明:模型桩基冲刷深度在15 cm(相当于桩长1/8)左右时,桩顶弯矩、轴力达到最大值;随着冲刷深度的加大桩身弯矩也随之增大,桩身最大弯矩位置(即最不利位置)随之下移,墩顶弯矩不变而墩底弯矩逐渐减小。岷江3号桥存在继续加剧冲刷的趋势,桩基承载力将继续下降,抗震性能将逐渐降低,需要进行墩桩加固。研究可为强震区受严重冲刷桥梁的抗震设计与加固提供参考依据,对类似工程有较强的借鉴意义。  相似文献   

10.
远场类谐和地震动更易引起桥梁破坏,为此,以某双柱墩梁桥为结构,分别建立抗震模型与隔震模型,分析其在远场类谐和地震动与普通地震动下的动力响应,揭示隔震后主梁、墩柱和支座的地震响应变化。此外,分析SSI效应时隔震梁桥的主梁位移、桥墩弯矩和剪力以及墩顶位移变化规律。结果表明;远场类谐和地震动下隔震可减少主梁纵桥向位移防止主梁与桥台碰撞,当类谐和地震动峰值加速度较大时,隔震梁桥桥墩横桥向地震响应较抗震结构会有所增大,带来不利影响;考虑桩-土作用的梁桥墩-系梁连接点纵向弯矩随着桩-土刚度减小而增大,墩-系梁连接点容易发生纵向弯曲破坏。  相似文献   

11.
采用MIDAS-GTS软件,建立起同时考虑土层、实体支护结构、桩土界面Goodman单元以及实际施工过程的片式冠梁双排桩支护基坑三维有限元分析模型。分析表明:片式冠梁在基坑规模不大时对支护桩水平位移具有较强的约束作用,且冠梁的最大弯矩及剪力位于坑角附近。在其他参数不变、仅冠梁长度改变的情况下,冠梁的水平位移曲线、冠梁剪力曲线可视为自变量是坑角水平距离值的一元函数,与冠梁本身的长度关系不大。当冠梁高度增大时,冠梁的弯矩及剪力值均明显增加,但冠梁水平位移减少并不明显。而冠梁参数不变时,随着基坑开挖深度的增加,基坑长侧中部处冠梁的水平位移、弯矩及剪力有加速增大至失稳破坏的趋势。随着排距的增大,长边冠梁的水平位移、弯矩及剪力的最大值会逐渐减少,但减少的速率也在降低。桩距的增大对长边冠梁的位移及受力情况影响较小。  相似文献   

12.
为研究微型桩支撑引板的无缝桥受力性能,进行了这种新型无缝桥的试设计,采用MIDAS/Civil建立了考虑微型桩 土相互作用的全桥空间有限元模型,对比分析了试设计桥与原桥在恒载作用、汽车荷载作用、引板沉降下的受力行为,以及温度作用、收缩徐变效应、引板与接线路面间伸缩量下的受力行为;采用模态分析和地震时程分析方法研究了桥梁自振特性和地震响应。结果表明:竖向荷载作用下试设计桥的主梁边跨正弯矩减少,同时引板沉降减少;微型桩的约束作用会使主梁在升温、降温、收缩徐变作用下的轴力增大;试设计桥在地震荷载作用下位移反应减少,提高了桥梁的抗震性能;该研究成果可为微型桩支撑引板的无缝桥设计提供借鉴,对该新型无缝桥在实际工程中的应用和发展起到推动作用。  相似文献   

13.
建立考虑桥台 土、桩-土相互作用的整体式无缝桥有限元分析模型,并选取下部结构形式、温度作用、台后填土性质以及桥梁跨径为研究参数,对比分析了采用不同下部结构形式的整体式无缝桥受力特征。结果表明:下部结构刚度越大,其对上部结构的约束作用越强,桥梁纵向整体性更明显,但对主梁梁端和桥台的受力越不利;当下部结构刚度较大时,温度对桥梁内力和变形的影响更明显;随着桥梁跨径的增大,整体温度作用的影响逐渐成为温度作用中的主要因素;当下部结构采用矮桥台与桩基础时,台后填土密实度对梁端和桥台弯矩以及主梁轴力的影响不明显;当采用墙式桥台时,随着台后填土密实度的增大,温度作用下主梁轴力会快速增大;随着桥梁跨径的增大,整体式无缝桥的内力不断增大,且当采用刚度较大的下部结构时增大的速率更快;若以桥台在正常使用极限状态下的混凝土裂缝宽度为控制目标,应对整体式无缝桥的最大桥长进行限制,且下部结构刚度越大,最大桥长的限制越严格。  相似文献   

14.
p-y曲线法是分析水平受荷桩基承载变形特性的主要方法,利用p-y曲线法的关键在于构建合理的p-y曲线。在砂土地基中开展了2组共10根水平受荷斜桩模型试验,其中2根斜桩仅分级施加了水平静力荷载,其余8根斜桩先施加了不同幅值的单向水平循环荷载,然后再分级施加水平静力荷载。试验测试了10根斜桩的砂面处桩身横向位移及桩身应变,根据桩身应变计算得到了桩身弯矩,在此基础上根据Euler-Bernoulli梁理论得到了桩侧土抗力及相应的桩身水平位移,构建了承受水平单向循环荷载后再承受水平静力荷载时斜桩的双曲线型p-y曲线,并给出了斜桩初始地基反力模量及桩侧极限土抗力的确定方法。用上述构建的双曲线型p-y曲线计算了本文模型试验及文献中模型试验斜桩的响应,发现利用所构建的p-y曲线得到的计算结果与实测结果整体上吻合较好,说明本文构建的双曲线型p-y曲线是合理可行的。最后利用p-y曲线计算了承受单向水平循环荷载后再承受水平静力荷载斜桩的桩身位移及桩身内力,计算结果表明:(1)相对于斜桩桩顶自由,桩顶固支能有效地减小斜桩的桩身横向位移、桩身弯矩及剪力;(2)在单向水平循环荷载作用下,正斜桩桩顶横向位移、 桩身最大弯矩及剪力均小于负斜桩;(3)无论是正斜桩还是负斜桩,桩顶横向位移、桩身剪力随着抗弯刚度增加而减小,而桩身最大弯矩随着抗弯刚度增加而增加。  相似文献   

15.
Improving the cracking resistance of steel-normal concrete (NC) composite beams in the negative moment region is one of the main tasks in designing continuous composite beam (CCB) bridges due to the low tensile strength of the NC deck at pier supports. This study proposed an innovative structural configuration for the negative bending moment region in a steel-concrete CCB bridge with the aid of ultrahigh performance concrete (UHPC) layer. In order to investigate the feasibility and effectiveness of this new UHPC jointed structure in the negative bending moment region, field load testing was conducted on a newly built full-scale bridge. The newly designed structural configuration was described in detail regarding the structural characteristics (cracking resistance, economy, durability, and constructability). In the field investigation, strains on the surface of the concrete bridge deck, rebar, and steel beam in the negative bending moment region, as well as mid-span deflection, were measured under different load cases. Also, a finite element model for the four-span superstructure of the full-scale bridge was established and validated by the field test results. The simulated results in terms of strains and mid-span deflection showed moderate consistency with the test results. This field test and the finite element model results demonstrated that the new configuration with the UHPC layer provided an effective alternative for the negative bending moment region of the composite beam.  相似文献   

16.
为研究不平衡土压力对整体式桥台-H型钢桩-土体系力学性能的影响,在已开展的不平衡土压力下整体式桥台-H型钢桩-土相互作用拟静力试验研究基础上,进一步开展了更大不平衡土压力(台后土表面均布荷载增大了3.81 kPa)下整体式桥台-H型钢桩-土相互作用拟静力试验研究,对比分析了更大不平衡土压力对桩身水平变形、桩侧土压力、应变和弯矩等方面的影响。结果表明:在试验条件下,更大不平衡土压力对桩身水平变形、土抗力、应变和弯矩的分布规律无影响; 正向加载时,更大不平衡土压力使得桩身累积变形的位置更深,桩侧最大土抗力和桩身弯矩增大; 负向加载时,更大不平衡土压力也使得桩身累积变形的位置更深和弯矩增大; 正向加载时,更大不平衡土压力使得累积变形减小,负向加载时则相反; 正向加载时LAHP模型的桩侧土抗力、应变和弯矩显著大于负向加载时的,正向加载时的最大桩侧土抗力和弯矩分别为负向加载时的2.2倍和2.1倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号