首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
清洁压裂液室内评价   总被引:1,自引:0,他引:1  
以自制季铵盐表面活性剂与水杨酸钠水溶液按一定比例混合,制备了清洁压裂液。对该压裂液的热稳定性、滤失性、破胶性和对地层伤害性进行了室内评价。结果表明,该清洁压裂液粘弹性好,能自动破胶无需使用破胶剂,对地层伤害小,配制简单,易于现场应用。  相似文献   

2.
针对国内清洁压裂液中普遍存在的耐温性能较差的问题,研发了一套新型疏水缔合聚合物压裂液体
系。该压裂液体系主要应用于130℃高温油藏的压裂施工,最终配方为0.45%聚合物稠化剂+0.4%交联剂+1%
KCl,并进行了室内试验,对该体系的流变性、黏弹性、悬砂性和破胶性能进行了测试。研究结果表明,该体系耐温
耐剪切性能良好,在130℃、170s-1
下剪切120min后黏度仍能保持在50mPa·s以上,加入破胶剂后该压裂液体系
破胶快速且彻底,无残渣,对地层伤害小,便于返排,有利于压裂施工。  相似文献   

3.
研究了不同浓度的WT-100表面活性剂作为增稠剂的清洁压裂液的流变性能,以及在不同类型的盐溶液中的粘度变化。用流变仪测定了60℃时3%NH4CL体系的储能模量和耗能模量,证实了其存在较好的粘弹性。4%WT-100+3%NH4CL体系在100℃,170 s-1条件下表观粘度达到36 mPa.s,该体系具有较好的悬砂性能,破胶简单彻底,残渣少,破胶液粘度低,容易返排,而且还具有一定的耐酸性,可以配制成酸性压裂液。  相似文献   

4.
低分子清洁压裂液稠化剂由单体共聚的低分子共聚物组成,在合成时成功引入磺酸基团和第三种抗盐单体,提高了聚合物的耐温、抗盐性,并抑制了酰胺基团的水解。低分子清洁压裂液pH值在6.5~7之间,呈偏酸性,不容易与地层水发生反应而生成沉淀堵塞地层;同时该体系为人工合成低分子聚合物,经严格生产控制,能够完全在水中溶解,不含水不溶物,可降低地层固相伤害,能有效提高压裂后的裂缝导流能力。  相似文献   

5.
采用阳离子季铵盐与水杨酸钠复配制备粘弹性体系——清洁压裂液,考察其性能及破胶情况。研究了水、原油、液化石油气及煤气对清洁压裂液粘弹体系的影响。结果表明,水对其稀释作用有限,原油可以使其破胶。制备了3种不同使用温度的清洁压裂液,破胶后体系黏度小于3 mPa·s,破胶时间0.5~6 h。清洁压裂液自身对粘土有抑制膨胀作用,抑制率73.6%,与 KCl 复配后抑制率达86.6%。研究表明,清洁压裂液对煤芯伤害率为41.13%,明显小于对照组线性瓜胶的伤害率78.64%。在阜新煤田压裂现场应用表明,清洁压裂液携砂性能良好,使用破胶剂返排效果理想。  相似文献   

6.
为解决清洁压裂液在低渗特低渗低产油藏压裂时无法彻底破胶的问题,根据清洁压裂液破胶机理,对清洁压裂液与醇类、表面活性剂类、无机盐、烃类等多种化学试剂的破胶情况进行了室内筛选实验。实验结果表明筛选出的清洁压裂液破胶剂YTS破胶性能较好,40℃时0.2%的加量可使清洁压裂液彻底破胶,破胶液粘度在5 mPa·s以下,并且破胶时间可控,能够满足低渗特低渗油藏清洁压裂液压裂施工的需要。  相似文献   

7.
清洁压裂液内外相破胶技术研究   总被引:1,自引:0,他引:1  
研究了在无外相物质或外相物质较少的环境下,用内外相结合的破胶方法实现清洁压裂液快速彻底破胶并进行了现场试验。清洁压裂液配方为:1.5%~2.5%VES+0.36%~0.74%激活剂+破胶剂。考察了外相破胶剂(原油、水)和内相破胶剂CT-1对压裂液破胶黏度的影响。随着原油量、水量的增加,压裂液的黏度降低;在35℃和无烃物...  相似文献   

8.
室内评价了两种地面交联酸在不同交联比、120℃和170 s-1的耐温耐剪切性,常温和90℃时的携砂性以及90℃下的破胶特性。配方一基酸由20% HCl+0.8%~1.2%稠化剂DMJ-130A+2.5%缓蚀剂DJ-04+0.5%助排剂DJ-02+1.2%铁离子稳定剂DJ-07+0.5%破乳剂DJ-10组成,交联剂为有机金属化合物DMJ-130B;配方二基酸由20% HCl+0.6%~1.0%高分子聚合物FA-214+2.5% DJ-04+0.5% DJ-02+1.2% DJ-07+0.5% DJ-10组成,交联剂为有机金属化合物AC-14。配方一在交联比为100:0.8时的黏度基本在100~250 mPa×s之间,剪切50 min后大于200 mPa×s;交联比为100:1.0时,黏度基本在80~170 mPa×s之间,剪切37 min后的黏度约100 mPa×s。配方二在交联比为100:1.0时,剪切20 min后的黏度为40~57 mPa×s;在交联比为100:1.3时的初期黏度变化较大,剪切15 min后,从600 mPa×s急剧下降并维持在60 mPa×s左右。陶粒在两种地面交联酸和常规瓜尔胶交联液中的沉降速率接近,为2.4×10-3~3.8×10-3 mm/s。两种地面交联酸与碳酸盐岩岩心在90℃反应4 h后,地面交联酸均可完全破胶,配方二稍快一些。配方一较配方二具有更好的携砂能力和减缓H+传递、增大活性酸有效穿透距离及裂缝扫油面积的性能。  相似文献   

9.
针对低温煤层气储层压裂改造难点,研制出一种低温煤层气清洁压裂液配方:0.4%VES+0.15%SSN+1.0%防膨剂+0.06%增效剂+0.08%防残渣剂,并针对该体系研制出了一种低温隐形破胶剂(20~35℃),对该清洁压裂液的携砂性、流变稳定性以及破胶性能等重要参数进行了评价。结果表明,该清洁压裂液抗剪切稀释性能强;20℃时,陶粒在该清洁压裂液中的沉降速度为0.528 cm/min;岩心伤害率为17.1%;裂缝导流能力强;低摩阻;对煤粉分散运移具有一定抑制性;加入0.45%自制低温隐形破胶剂,在3~4 h完全破胶,破胶后溶液的表面张力为23.5 mN/m,破胶液黏度为3.85 mPa·s,破胶后残渣含量为6.5 mg/L,破胶液岩心伤害率为13.5%,破胶液与地层水配伍性良好。  相似文献   

10.
清洁压裂液室内研究   总被引:10,自引:1,他引:9  
低压、低渗透油层使用聚合物压裂液不仅会在压开裂缝的表面形成滤饼,还会产生部分残渣留在地层和支撑裂缝中,造成二次污染,影响压裂效果.研制出了增稠剂VES-Ⅰ和VES-Ⅱ,并优选出了适用于20~120 ℃的清洁压裂液配方,即:将水、增稠剂VES-Ⅰ和VES-Ⅱ、胶束促进剂SYN、KCl等按一定比例混合,搅拌形成粘弹性胶体.该压裂液破胶后无残渣,其独特配方消除了阳离子表面活性剂的润湿反转作用对地层可能造成的伤害,所以,不会降低地层的渗透率及支撑裂缝的导流能力.该压裂液配制简单,不需要杀菌剂和破胶剂,具有流变性能好、造缝与携砂能力强、对地层伤害小、使用方便等优点.  相似文献   

11.
针对目前阳离子清洁压裂液存在的成本高、吸附造成的伤害大的问题,研发出了一种小分子阴离子型、抗剪切、低伤害、多功能的环保型清洁压裂液体系,其配方为:4%F-VES+0.5%KCl。室内性能评价结果表明,该压裂液的耐温耐剪切性良好,在80℃的表观黏度为40 mPa.s,在60℃连续剪切70 min后的黏度为67 mPa.s;在常温下与原油混合可迅速破胶,破胶液黏度小于5 mPa.s,表面张力为25 mN/m;静态悬砂速度为0.02~0.04cm/s;对岩心的伤害率为14.5%,比瓜胶压裂液和VES压裂液分别下降了58.6%和45.5%;对支撑剂导流能力的伤害率为9%,较VES压裂液下降了近74%;破胶液的驱油率为65%,与驱油剂WP-1相当。  相似文献   

12.
适合特低渗透油田的VES清洁压裂液性能   总被引:1,自引:0,他引:1  
何静  王满学  赵逸 《钻井液与完井液》2012,29(1):79-81,84,96
分析了VES清洁压裂液的黏弹性形成机理、抗剪切机理和破胶机理.室内实验表明,该清洁压裂液具有高弹性、低黏度的特性,其形成过程和流变性质对造缝、携砂、降低施工摩阻和控制缝高有重要的应用价值;稠化剂和激活剂之间有一个最佳比值;无机盐在较高的温度下不仅没有提高反而使得压裂液黏度降低,这是因为这些小分子在热运动中的剧烈振动,会增加对清洁压裂液中网络的破坏;复合物FH-1(30%C8醇和70%C10-14烷烃)可满足清洁压裂液在无烃类物质存在下的破胶,其可以有效控制清洁压裂液的破胶速度.该压裂液具有配液方便、使用添加剂种类少、不存在残渣等特点,采用内外相相结合的破胶剂可实现清洁压裂液在油层快速破胶排出地层,从而减少对地层伤害.  相似文献   

13.
为解决超分子缔合结构压裂液在特殊储层的破胶难题,实现该新型体系的大规模应用,通过比较90℃下不同添加剂对压裂液流变性能的影响,研究了有机溶剂、过氧化物、柴油、煤油、醇类以及复配添加剂对超分子缔合结构压裂液的破胶效果。结果表明,在90℃下,0.5%有机溶剂乙二醇单丁醚和三乙醇胺分别使压裂液黏度下降了80和77 mPa·s,并保持最低黏度为30 mPa·s;0.1%过硫酸钠120 min可使压裂液黏度降到4.312 mPa·s,破胶效果明显;加入0.6%柴油和煤油,破胶时间分别为50和40 min;多元脂肪醇与缔合高分子相互作用可以降低压裂液黏度, 1.0%正辛醇能使超分子缔合结构压裂液黏度下降到24 mPa·s;不同化学剂的复配可以缩短破胶时间,其中0.03% FeSO4、0.05% FeS分别与0.1%过硫酸铵复配可将破胶时间缩短60 min。通过以上方法可实现缔合结构压裂液在无原油存在的情况下破胶。   相似文献   

14.
新型吉米奇季铵盐在VES清洁压裂液中的应用研究   总被引:2,自引:0,他引:2  
采用吉米奇(Gemini)季铵盐阳离子表面活性剂NGA——乙烯撑基双(十八烷基二甲基溴化铵)和氯化钠配制了一种VES清洁压裂液,使用控制应力流变仪对配制的VES清洁压裂液的性能进行了测定。结果表明:NGA 2.0%(w),NaCl 4.0%(w)配制的VES清洁压裂液体系具有良好的粘弹性及抗温稳定性能,最高抗温可达95℃,解决了传统季铵盐类清洁压裂液体系的添加量高、耐温性能差的缺点,具有良好的应用前景。  相似文献   

15.
制备了以阴离子表面活性剂为主剂的CHJ清洁压裂液,并研究了其主要性能。CHJ清洁压裂液黏度随稠化剂加量的增加而增加,随KCl加量的增大先增加后降低,在KCl质量分数约2.7%时,黏度达到最大值360 mPa.s。该清洁压裂液在100℃、170 s-1下的耐温耐剪切性能良好。在80、120℃时,砂粒在压裂液中的沉降速度分别为11.124、18.840 mm/min,携砂性较好。煤油加量为3%时,压裂液在70 min左右破胶,清洁压裂液黏度降至5 mPa.s以下,破胶液表面张力为26.10 mN/m,界面张力为0.73 mN/m,比较符合现场施工要求。清洁压裂液的破胶液对岩心的伤害率为7.65%。图4参11  相似文献   

16.
基于清洁压裂液和黏弹性表面活性剂的研究思路,综合应用分子缔合形成结构流体的理论,研制出了一种新型的清洁压裂液增稠剂及压裂液体系——GRF清洁压裂液。运用RS6000型流变仪对该压裂液的抗温性、抗剪切性能,黏弹性及触变性等进行了测定。通过大量实验表明,该压裂液具有良好的抗温、抗剪切性能;在低于动态屈服应力下该体系储能模量G′恒大于耗能模量G″,是典型的黏弹性结构流体;并且其触变性对降低流体摩阻起到了决定性作用。这些良好的流变特性使得GRF压裂液的现场应用取得了比常规压裂液更好的增产效果。  相似文献   

17.
考察了羟丙基磺基甜菜碱VESBET-4浓度、pH值和无机盐的加入对体系黏度的影响,并评价了VES压裂液(2.5%表面活性剂+0.5%黏土稳定剂)的耐温抗剪切性能、携砂能力及破胶性能。结果表明:当转速达到250 r/min时,质量分数为2%的VESBET-4溶液的黏度可达到600mPa·s以上;该表面活性剂适于在中性及碱性条件下使用;且该表面活性剂与黏土稳定剂NH4Cl、KCl具有良好的配伍性,无机盐的加入基本不影响体系的黏度。该压裂液体系具有良好的耐温耐剪切性能,在温度70℃、剪切速率170s-1下的体系黏度仍高于50 mPa·s,60℃、170s-1下剪切2h后的体系黏度仍高于85mPa·s。同时,单颗砾石的沉降速率为0.95 cm/h,砂比为30%时的砂子沉降速率为1.11cm/h,说明该体系具有良好的携砂造缝能力。使用模拟地层水可对该压裂液体系进行破胶,破胶时间在1 h内,破胶后体系黏度可降至4.27 mPa·s以下。图5表2参12  相似文献   

18.
清洁压裂液体系是由新型双子表面活性剂与水杨酸钠在无机盐溶液中作用而成.通过对清洁压裂液体系进行综合性能评价发现:该清洁压裂液体系具有组成简单、无固相残渣、携砂性能好、遇水或油自动破胶(破胶时间小于2h)、破胶液的表面张力和界面张力均小于所要求的技术指标、配制及施工简单等特点,在60℃时黏度达624 mPa·s,满足中高...  相似文献   

19.
开发了一种新型甜菜碱表面活性剂压裂液BVES-80。该压裂液优化配方为2.5% 甜菜碱表面活性剂DBA2-12+4.0% KCl+0.5%水杨酸钠+1.0%异丙醇+自来水。对BVES-80 压裂液性能的评价结果表明,NaCl、CaCl2、MgCl2加量为3%时,压裂液的黏度分别为337、370、394 mPa·s,耐盐性较好。压裂液静置7 d后的黏度为321 mPa·s,变化较小,稳定性较好。在170 s-1下连续剪切1 h后的黏度分别大于50(60℃)和30(80℃)mPa·s,在中低温下的耐温抗剪切能力良好。在30℃、0.01~10 Hz条件下,压裂液储能模量G′始终大于耗能模量G″,且G′大于10 Pa,G″大于0.3 Pa,黏弹性较好。60℃下,陶粒在BVES-80清洁压裂液中的沉降速度为0.14 mm/s,远小于0.5%胍胶压裂液的值(1.50 mm/s),携砂性能较好。在30℃下与煤油混合可在12 h内彻底破胶,破胶液黏度小于5 mPa·s,残渣含量23.46~54.37 mg/L,破胶液表面张力26.3~27.5 mN/m,破胶液与煤油的界面张力0.55~0.62 mN/m。该体系在80℃下的滤失系数为4.75×10-4 m/min0.5,对岩心的渗透率伤害率仅为7.4%,适合不超过80℃的中低温低渗地层的储层改造。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号