首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
在水泥基材料中掺加纳米SiO2已有一定研究,但由于采用普通的搅拌方法纳米材料在水中不易分散,其增强水泥基材料的性能不明显.采用高速研磨搅拌、高速研磨搅拌+超声波分散等方法对纳米SiO2进行分散,纳米SiOz掺量为水泥质量的O.5%、1%,试验结果表明,采用上述分散方法试块抗压、抗折强度均明显提高.  相似文献   

2.
研究了手工搅拌、高速研磨搅拌、高速研磨搅拌+超声波的方法对纳米SiO2进行分散,并采用紫外-可见分光光度法研究了在不同分散方法下纳米SiO2的分散程度,测定了纳米SiO2水泥基材料抗折、抗压强度.试验结果表明:采用后两种方法,纳米SiO2分散程度大大增加,水泥基材料抗折、抗压强度明显提高.  相似文献   

3.
采用手工搅拌、高速研磨搅拌以及高速研磨搅拌加超声波震荡这3种方法对纳米SiO2进行分散处理,研究了不同处理方式下纳米SiO2对水泥浆体性能的影响.用扫描电镜(SEM)观测了浆体微观结构,并采用紫外-可见分光光度法测定了在不同分散方法下纳米SiO2的分散程度.结果表明,采用后2种方法处理的纳米SiO2分散程度更高,可大幅提高水泥砂浆的抗压、抗折强度,使砂浆水化产物结构均匀,更密实.  相似文献   

4.
纳米黏土在水泥基材料中的分散情况严重影响其性能,其中分散方式、分散时间和掺量是影响纳米黏土改性水泥性能的主要因素.利用XRD,SEM,压汞等试验手段从微观尺度揭示了纳米改性水泥基材料的改性机理,探讨了分散方式对纳米黏土在水泥基材料中分散特性的影响;研究了纳米黏土掺量对水泥强度的影响规律,得到了改善水泥抗折强度的纳米黏土最佳掺量.结果表明:机械分散、延长分散时间均能提高纳米黏土在水泥基材料中的分散性;纳米黏土能够提高水泥的早期抗折强度.掺入3.00%的纳米黏土对水泥抗折强度提高最明显,其14d抗折强度较普通水泥试件提高2164%,90d抗折强度提高25.94%.  相似文献   

5.
对两类搅拌工艺(纤维先掺和后掺法)制备的改性聚丙烯纤维增强水泥基材料进行测试,研究新拌砂浆在不同搅拌时间和搅拌速率下的纤维分散性和工作性能,并对其浇筑物进行不同龄期的抗压抗折试验。基于上述试验结果确立可靠的搅拌工艺,并浇筑平板试件。通过四点弯曲试验研究改性聚丙烯纤维长度和掺量对弯曲性能的影响。研究结果表明:纤维后掺和慢速搅拌为可靠的搅拌工艺。纤维长度为12 mm时弯曲强度最大,纤维长度为20 mm时延展性、韧性和残余强度最好。在纤维长度相同时弯曲性能会随着纤维掺量的增加而增大。该研究可以为改性聚丙烯纤维制备纤维增强水泥基材料提供一定的试验依据。  相似文献   

6.
通过18组共90根纳米SiO2和聚乙烯醇(PVA)纤维增强水泥基复合材料预制切口小梁试件的三点弯曲断裂试验,以起裂断裂韧度和断裂能作为评价指标,探讨了纳米SiO2掺量、PVA纤维体积分数及石英砂粒径对水泥基复合材料断裂性能的影响.结果 表明:适量的纳米SiO2和PVA纤维可显著改善试件的断裂性能,在未掺纳米SiO2或纳米SiO2掺量为2.0%条件下,随着PVA纤维体积分数的增加,试件的起裂断裂韧度和断裂能均呈现先增后减趋势,且均在PVA纤维体积分数为1.2%时达到最大值.当纳米SiO2掺量小于1.5%时,试件的断裂性能随着纳米SiO2掺量的增加而提高;当纳米SiO2掺量大于1.5%时,纳米SiO2的掺入对试件的断裂性能有不利影响;随着石英砂粒径的减小,试件的断裂性能逐渐降低.  相似文献   

7.
《低温建筑技术》2016,(9):16-17
针对纳米SiO_2在水泥基复合材料难以分散的问题,采用机械搅拌和超声波分散以及应用减水剂对纳米SiO_2在水泥砂浆中进行分散,同时探讨纳米SiO_2的不同掺量对水泥砂浆力学性能影响,试验确定纳米SiO_2在水泥砂浆中最优掺量。结果表明,应用物理分散和化学分散相结合的方法提高纳米SiO_2在水泥砂浆中的分散是可行的,纳米SiO_2复合砂浆抗折和抗压强度随其掺量的增加而增加。  相似文献   

8.
采用球磨法将石墨烯纳米片分散在水泥基体中,研究了石墨烯纳米片掺量对水泥基材料抗折强度和抗压强度的影响。实验结果表明,适量的石墨烯纳米片可均匀分散在水泥基体中,通过桥联效应和拔出效应对水泥基材料起增强增韧作用,当石墨烯纳米片掺量为0.04%时,石墨烯纳米片与水泥基体界面结合良好,没有明显过渡层,试件3d抗折强度和抗压强度分别提高了22.84%和23.61%。  相似文献   

9.
为研究纳米SiO_2和PVA纤维增强水泥基复合材料的抗冻性能,通过快冻法试验测得了各组试件经冻融循环后的相对动弹性模量,对单掺PVA纤维与复掺纳米粒子和PVA纤维水泥基复合材料的抗冻性能进行了对比,探讨了纳米SiO_2与PVA纤维对水泥基复合材料抗冻性能的影响。结果表明:在一定掺量范围内掺加PVA纤维可以提高水泥基复合材料的抗冻性能,但过大掺量(0.9%)的PVA纤维会对水泥基复合材料的抗冻性产生不利影响;在PVA纤维水泥基复合材料中掺入纳米SiO_2可以明显提高其抗冻性能,在本文试验纳米SiO_2掺量范围内,其抗冻性随着纳米SiO_2掺量的增加不断增强;在掺加2%纳米SiO_2的水泥基复合材料中掺加一定掺量(0.9%)的PVA纤维可以提高水泥基复合材料的抗冻性。  相似文献   

10.
聚丙烯纤维对水泥基材料性能的影响   总被引:6,自引:0,他引:6  
本文采用不同工艺制作的三种不同几何形态的聚丙烯纤维,在不同掺量情况下对水泥基材料抗塑性干缩开裂性能、力学性能和耐久性的影响进行了研究.结果表明:1.聚丙烯纤维几何形态、掺量对抗塑性干缩开裂性能有明显影响,在本实验条件下,拉丝PP纤维在Vf≥0.10%时,可使水泥砂浆免于塑料干缩开裂;2.聚丙烯纤维可使混凝土抗弯韧性指数明显提高,同时对混凝土力学性能基本上无不良影响;3.聚丙烯纤维对水泥基材料的抗渗性、抗冻性有一定程度的改善作用.本文探讨了聚丙烯纤维对水泥基材料性能作用机理.  相似文献   

11.
冻融循环作用下纤维混凝土的损伤模型研究   总被引:4,自引:0,他引:4       下载免费PDF全文
通过对4组10 cm×10 cm×40 cm混凝土试件的快速冻融循环试验,以及采用共振法和超声法进行试件的波速和频率测试,得到了冻融循环200次混凝土试件的损伤参量特征值和强度变化规律,论证了超声波速作为损伤参量测试值的合理性,研究了冻融循环对纤维混凝土材料损伤特性的影响因素,分析了纤维混凝土冻融损伤破坏的细观机理,结合动弹性模量和超声波速相对值的变化特点,根据细观损伤力学和数学模拟的方法建立了纤维混凝土冻融损伤本构模型。研究分析和测试计算显示:纤维混凝土冻融损伤模型的计算值与实测值基本吻合,本构模型预测的混凝土损伤特性符合混凝土实际冻融破坏情况;超声波速作为损伤参量易于测量且易与宏观量建立联系,能够较好地反应纤维混凝土冻融损伤规律;聚丙烯纤维在混凝土中能够产生引气效应,可有效地抑制混凝土的冻融损伤劣化程度,在本文研究的混凝土强度范围内纤维掺量为10%时混凝土抗冻性最好。  相似文献   

12.
为研究聚乙烯醇(PVA)纤维的分散程度对水泥砂浆和水泥稳定碎石性能的影响,用粉煤灰对PVA纤维束进行分散处理,同时采用灰度共生矩阵图像处理法对PVA纤维的图像纹理进行熵分析,建立单因素方差分析数学模型,用以检验粉煤灰对PVA纤维分散程度的显著性影响,得出PVA纤维的分散程度与图像熵之间的关系;然后采用质量均分称重法对灰度共生矩阵图像处理法进行验证分析;再通过室内试验研究水泥基复合材料的力学性能与PVA纤维分散程度之间的关系.结果 表明:PVA纤维的分散程度随着添加的粉煤灰与PVA纤维质量比(简称质量比)的增加而增大,当质量比大于50:1时,PVA纤维束能在水泥基复合材料中均匀分散;图像熵随质量比的增加而增加,纤维均值的变异系数随质量比的增加而减小;水泥砂浆的抗折强度、破裂能和水泥稳定碎石的劈裂强度随图像熵的增加而增大.由此可知,提升PVA纤维在水泥砂浆和水泥稳定碎石中的分散程度,可提升水泥砂浆和水泥稳定碎石的力学性能.  相似文献   

13.
通过聚丙烯纤维气泡混合轻质土标准试件无侧限抗压试验来探究聚丙烯纤维含量及纤维长度对气泡混合轻质土抗压强度的影响。试验结果表明:气泡混合轻质土的抗压强度随着聚丙烯纤维含量的增加而提高,且龄期越长,其强度增长效果越显著;当抗压强度达到峰值后,随着聚丙烯纤维长度的增加,气泡混合轻质土的抗压强度曲线呈降低趋势,且存在纤维长度最优值。结合材料应力-应变曲线,采用坐标无量纲化处理及分段式受压曲线方程理论,初步建立了聚丙烯纤维气泡混合轻质土单轴受压全曲线函数方程,并采用离散数据数值分析方法对应力-应变曲线下降段的理论函数方程进行修正,给出了具有明确物理意义的聚丙烯纤维气泡混合轻质土单轴受压全曲线分段函数方程。  相似文献   

14.
将纳米SiO2以0.5%、1.0%、2.0%和4.0%等量取代水泥,研究了纳米SiO2对水泥胶砂性能的影响。试验结果表明,掺加纳米SiO2使水泥标准稠度用水量急剧增加;水泥的初凝和终凝时间略有缩短;对水泥安定性无不良影响;水泥胶砂的7d和14d抗折强度较对照组有所提高,但对28d抗折强度贡献不大;水泥胶砂的7d、14d和28d抗压强度较对照组有所提高。从经济的角度考虑,纳米SiO2的最佳掺量为2%。  相似文献   

15.
为了研究早龄期高强混凝土在承受多次反复荷载作用下内部损伤情况及超声波特性,在室内实验室制作了一批混凝土立方体试块,脱模后在标准养护室进行养护。分别测定了1、2和3 d龄期的混凝土立方体试块经历多次50%、70%和80%极限荷载前后的抗压强度和超声波波速变化规律;7、14、28 d龄期混凝土立方体试块的抗压强度和超声波波速。试验结果表明:在28天龄期内声速随龄期增长不断增大,与强度基本呈线性关系;前3天龄期的混凝土试块在承受不同比例的极限荷载时,损伤程度和变化规律不同,单轴抗压强度与超声波波速都能衡量这种变化规律。这对于研究超声波测试技术衡量爆破工程中的早龄期高强混凝土在经受多次爆破荷载作用下的损伤累积规律具有一定的指导作用。  相似文献   

16.
马兵林 《建筑施工》2020,42(1):27-29
为研究纤维改良高速铁路软土路基红黏土的改良效果与路用性能,室内展开不同掺量、不同围压下的纤维改良红黏土三轴不固结不排水强度试验。试验结果表明:聚丙烯有机纤维的掺加显著提升了红黏土试样的力学性能,50kPa围压下,素红黏土的抗压强度为129.21kPa,1%、3%纤维掺量下相比提升21.85%、52.18%,5%掺量下强度达到原强度的2.02倍;纤维掺量对红黏土的提升主要体现在材料黏聚力的大幅提高,而对内摩擦角的影响无明显规律;3%的聚丙烯纤维掺量是大幅提升红黏土路用性能且降低经济成本的最佳方案。  相似文献   

17.
纳米SiO2改善水泥胶砂性能的研究   总被引:1,自引:0,他引:1  
将纳米SiO2以0.5%、1.0%、2.0%和4.0%等量取代水泥,研究了纳米SiO2对水泥胶砂性能的影响。试验结果表明,掺加纳米SiO2使水泥标准稠度用水量急剧增加;水泥的初凝和终凝时间略有缩短;对水泥安定性无不良影响;水泥胶砂的7 d和14 d抗折强度较对照组有所提高,但对28 d抗折强度贡献不大;水泥胶砂的7 d、14 d和28 d抗压强度较对照组有所提高。从经济的角度考虑,纳米SiO2的最佳掺量为2%。  相似文献   

18.
以普通硅酸盐水泥为基体,与玉米秸秆纤维复合制成硅酸盐水泥基秸秆复合材料,研究了酸、碱、盐3种玉米秸秆处理液的浓度与处理时间对复合材料力学性能的影响规律,并确定了3种处理液的最佳处理浓度和处理时间。研究结果表明:当3~4 cm的秸秆纤维掺加量为50%(占水泥体积的百分比)时,随着NaOH浓度从4%增加至6%,复合材料的抗折强度增加,抗压强度增加,当NaOH浓度为6%,处理时间为12 h时,复合材料的抗折强度和抗压强度最高,分别为11.7、26.8 MPa;随着H2O2浓度从2%增加至8%,复合材料的抗折强度增加,抗压强度增加,当H2O2浓度为8%,处理时间为10 min时,复合材料的抗折强度和抗压强度最高,分别为11.3、23.6 MPa,H2O2浓度为2%,处理时间为20 min时,复合材料的抗折强度最高,为11.7 MPa,处理时间为50 min时,复合材料的抗压强度最高,为25.5 MPa;随着Na2SiO3浓度从1%增加至2%,复合材料的抗折强度增加,抗压强度增加,当Na2SiO3浓度为2%,处理时间为10 min时,复合材料的抗折强度和抗压强度最高,分别为9.9、20.1 MPa。  相似文献   

19.
田砾  毛新奇  李晓东  赵铁军 《混凝土》2006,(11):10-12,19
砂浆、混凝土等水泥基复合材料易于开裂、耐久性低劣的主要原因是其抗拉强度低、韧性差。高模量聚乙烯醇(PVA)纤维的添加可以增强水泥基材料的韧性,使其呈现准应变硬化和多微缝开裂特性,从而显著改善结构的耐久性。通过四点弯曲试验研究了PVA纤维体积掺量分别为0、0.75%、1.5%的抗折强度,按照ASTM方法确定了SHCC的弯曲韧度指数,通过JCI方法得到了SHCC的弯曲韧性系数。结果表明,最大抗弯承载力和最大挠度均随纤维掺量的增加而增加。结果可由纤维增强材料的应变硬化特性来解释。同时,与数值模拟结果的比较也证实了上述结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号