首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first 3 of 18 neutron time-of-flight (nTOF) channels have been installed at the National Ignition Facility (NIF). The role of these detectors includes yield, temperature, and bang time measurements. This article focuses on nTOF data analysis and quality of results obtained for the first set of experiments to use all 192 NIF beams. Targets produced up to 2×10(10) 2.45 MeV neutrons for initial testing of the nTOF detectors. Differences in neutron scattering at the OMEGA laser facility where the detectors were calibrated and at NIF result in different response functions at the two facilities. Monte Carlo modeling shows this difference. The nTOF performance on these early experiments indicates that the nTOF system with its full complement of detectors should perform well in future measurements of yield, temperature, and bang time.  相似文献   

2.
A magnetic recoil spectrometer (MRS) has been built and successfully used at OMEGA for measurements of down-scattered neutrons (DS-n), from which an areal density in both warm-capsule and cryogenic-DT implosions have been inferred. Another MRS is currently being commissioned on the National Ignition Facility (NIF) for diagnosing low-yield tritium-hydrogen-deuterium implosions and high-yield DT implosions. As CR-39 detectors are used in the MRS, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). The coincidence counting technique was developed to reduce these types of background tracks to the required level for the DS-n measurements at OMEGA and the NIF. Using this technique, it has been demonstrated that the number of background tracks is reduced by a couple of orders of magnitude, which exceeds the requirement for the DS-n measurements at both facilities.  相似文献   

3.
Charge-injection devices (CIDs) are being used to image x rays in laser-fusion experiments on the University of Rochester's OMEGA Laser System. The CID cameras are routinely used up to the maximum neutron yields generated (~10(14)?DT). The detectors are deployed in x-ray pinhole cameras and Kirkpatrick-Baez microscopes. The neutron fluences ranged from ~10(7) to ~10(9)?neutrons/cm(2) and useful x-ray images were obtained even at the highest fluences. It is intended to use CID cameras at the National Ignition Facility (NIF) as a supporting means of recording x-ray images. The results of this work predict that x-ray images should be obtainable on the NIF at yields up to ~10(15), depending on distance and shielding.  相似文献   

4.
The laser megajoule (LMJ) and the National Ignition Facility (NIF) plan to demonstrate thermonuclear ignition using inertial confinement fusion (ICF). The neutron yield is one of the most important parameters to characterize ICF experiment performance. For decades, the activation diagnostic was chosen as a reference at ICF facilities and is now planned to be the first nuclear diagnostic on LMJ, measuring both 2.45 MeV and 14.1 MeV neutron yields. Challenges for the activation diagnostic development are absolute calibration, accuracy, range requirement, and harsh environment. At this time, copper and zirconium material are identified for 14.1 MeV neutron yield measurement and indium material for 2.45 MeV neutrons. A series of calibrations were performed at Commissariat a? l'Energie Atomique (CEA) on a Van de Graff facility to determine activation diagnostics efficiencies and to compare them with results from calculations. The CEA copper activation diagnostic was tested on the OMEGA facility during DT implosion. Experiments showed that CEA and Laboratory for Laser Energetics (LLE) diagnostics agree to better than 1% on the neutron yield measurement, with an independent calibration for each system. Also, experimental sensitivities are in good agreement with simulations and allow us to scale activation diagnostics for the LMJ measurement range.  相似文献   

5.
The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005)], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006)]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D(3)He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006)]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.  相似文献   

6.
Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron-Freon interactions were observed at neutron yields of 10(13) emitted from deuterium-tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.  相似文献   

7.
We describe the evaluation of a microchannel plate (MCP) photomultiplier tube (PMT), incorporating a 3?μm pore MCP and constant voltage anode and cathode gaps. The use of the small pore size results in PMTs with response functions of the order of 85 ps full-width-half-maximum, while the constant electric field across the anode and cathode gaps produces a uniform response function over the entire operating range of the device. The PMT was characterized on a number of facilities and employed on gas Cherenkov detectors fielded on various deuterium tritium fuel (DT) implosions on the Omega Laser Facility at the University of Rochester. The Cherenkov detectors are part of diagnostic development to measure Gamma ray reaction history for DT implosions on the National Ignition Facility.  相似文献   

8.
Inertial confinement fusion (ICF) requires a high resolution (~10 μm) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser Me?gaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a (60)Co γ-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 μm were obtained and are compared to x-ray images of comparable resolution.  相似文献   

9.
Three types of neutron detectors (plastic scintillation detectors, indium activation detectors, and CR-39 track detectors) were calibrated for the measurement of 2.45 MeV DD fusion neutron yields from the deuterium cluster fusion experiment on the Texas Petawatt Laser. A Cf-252 neutron source and 2.45 MeV fusion neutrons generated from laser-cluster interaction were used as neutron sources. The scintillation detectors were calibrated such that they can detect up to 10(8) DD fusion neutrons per shot in current mode under high electromagnetic pulse environments. Indium activation detectors successfully measured neutron yields as low as 10(4) per shot and up to 10(11) neutrons. The use of a Cf-252 neutron source allowed cross calibration of CR-39 and indium activation detectors at high neutron yields (~10(11)). The CR-39 detectors provided consistent measurements of the total neutron yield of Cf-252 when a modified detection efficiency of 4.6×10(-4) was used. The combined use of all three detectors allowed for a detection range of 10(4) to 10(11) neutrons per shot.  相似文献   

10.
The determination of the fuel ion ratio n(t)/n(d) in ITER is required at a precision of 20%, time resolution of 100 ms, spatial resolution of a/10, and over a range of 0.016?keV and for n(T)/n(D)<0.6. A crucial issue is the signal-to-background situation in the measurement of the weak 2.5 MeV emission from DD reactions in the presence of a background of scattered 14 MeV DT neutrons. Important experimental input and corroboration for this assessment are presented from the time-of-flight neutron spectrometer at JET where the presence of a strong component of backscattered neutrons is observed. Neutron emission components on ITER due to beam-thermal and tritium-tritium reactions can further enhance the prospects for NES.  相似文献   

11.
Time-resolved measurements of the neutron flux from the Scylla IV-P linear theta-pinch experiment have been made with scintillator-photomultiplier combinations. Calibration of the detectors is accomplished by a comparison of their time-integrated output with the total neutron yield measured using a foil-activation technique for which an accurate calibration has been established. The temperature of the Maxwellian ion velocity distribution that would produce the observed flux is obtained from the Maxwellian reactivity < sigmav >(DD) for D (d,n)He3 and measurements of the temporal evolution of the plasma column density and dimensions. This determination of the time history of the ion temperature is in good agreement with the plasma energy measured using other techniques.  相似文献   

12.
We have developed and tested sensitive neutron detectors for neutron time-of-flight measurements in z-pinch and plasma focus experiments with neutron emission times in tens of nanoseconds and with neutron yields between 10(6) and 10(12) per one shot. The neutron detectors are composed of a BC-408 fast plastic scintillator and Hamamatsu H1949-51 photomultiplier tube (PMT). During the calibration procedure, a PMT delay was determined for various operating voltages. The temporal resolution of the neutron detector was measured for the most commonly used PMT voltage of 1.4 kV. At the PF-1000 plasma focus, a novel method of the acquisition of a pulse height distribution has been used. This pulse height analysis enabled to determine the single neutron sensitivity for various neutron energies and to calibrate the neutron detector for absolute neutron yields at about 2.45 MeV.  相似文献   

13.
In mining, it is important to ensure effective monitoring and to improve the precision of the geophysical instruments used in mineral prospecting. The electrophysical and structural optimization of instruments for monitoring the neutron yield of borehole generators in neutron–neutron logging systems is considered. Diamond detectors have been developed and successfully employed for this purpose. The expanded use of diamonds, especially in instruments, improves the utilization of natural resources. In regular equipment for monitoring the neutron yield of borehole generators in neutron–neutron logging systems, the consequences of introducing Russian diamond detectors are studied. Specifically, the influence of the ambient parameters on the borehole instrument (temperature stability of the diamond detector in the range 20–140°C) is determined; and the linearity of the conversion characteristic of the fast-neutron monitor in the system is investigated by measuring the fluctuation of the output-signal amplitude in the range 20–140°C.  相似文献   

14.
The iodine laser at PALS Laboratory in Prague, operating at 1315 nm fundamental harmonics and at 300 ps FWHM pulse length, is employed to irradiate thin hydrogenated targets placed in vacuum at intensities on the order of 10(16) W∕cm(2). The laser-generated plasma is investigated in terms of proton and ion emission in the forward and backward directions. The time-of-flight technique, using ion collectors and semiconductor detectors, is used to measure the ion currents and the corresponding velocities and energies. Thomson parabola spectrometer is employed to separate the contribution of the ion emission from single laser shots. A particular attention is given to the proton production in terms of the maximum energy, emission yield, and angular distribution as a function of the laser energy, focal position, target thickness, and composition. Metallic and polymeric targets allow to generate protons with large energy range and different yield, depending on the laser, target composition, and target geometry properties.  相似文献   

15.
A ring neutron detector has been developed for a time-of-flight diffractometer based on linear scintillation detectors. Light is transported over an organic glass light guide with a diffuse reflector. This scheme makes it possible to collect more photons than are collected in detectors based on wavelength-shifting fibers and to use avalanche photodiodes (SiPMs) instead of photomultiplier tubes. Testing confirmed that these detectors could be used as an alternative for widely used proportional neutron counters filled with 3He.  相似文献   

16.
Results of physical calibrations of the LEND neutron telescope operating on board the NASA’s LRO lunar satellite since June 2009 are described. The main goal of the LEND telescope is to measure the epithermal neutron flux in polar areas of the lunar surface with a high (~10 km) resolution with the aim of determining the hydrogen distribution in the lunar regolith and detect the presence of water ice beds at the bottom of permanently shadowed lunar polar craters. The neutron detection efficiency and the effective area of the LEND detectors is experimentally estimated.  相似文献   

17.
The neutron fields in the collimators of a new design for the vertical neutron camera (VNC) of the ITER have been calculated for a standard isotropic bulk DT neutron source. The neutron and gamma-ray spectra and flux densities at the neutron detector sites have been calculated. The signal-to-background ratio of VNC detectors (238U-based fission chambers and diamond detectors) has been estimated. The signal-to-background ratios versus the threshold energy were calculated for the diamond detectors operating in the threshold counter mode. The effect of background Γ-ray radiation on the performance of the diamond detectors in the VNC environment has been estimated. The radiation heating of the VNC structural components has been calculated. The serviceability of the VNC with the proposed design has been demonstrated.  相似文献   

18.
Fast ions are produced by neutral beam injection and ion cyclotron heating in toroidal magnetic fusion devices. As deuterium fast ions orbit around the device and pass through a neutral beam, some deuterons neutralize and emit D(alpha) light. For a favorable viewing geometry, the emission is Doppler shifted away from other bright interfering signals. In the 2005 campaign, we built a two channel charge-coupled device based diagnostic to measure the fast-ion velocity distribution and spatial profile under a wide variety of operating conditions. Fast-ion data are acquired with a time resolution of approximately 1 ms, spatial resolution of approximately 5 cm, and energy resolution of approximately 10 keV. Background subtraction and fitting techniques eliminate various contaminants in the spectrum. Neutral particle and neutron diagnostics corroborate the D(alpha) measurement. Examples of fast-ion slowing down and pitch angle scattering in quiescent plasma and fast-ion acceleration by high harmonic ion cyclotron heating are presented.  相似文献   

19.
We have explored the technological potential of combining neutron resonance spin echo (NRSE) with the time-of-flight method in quasielastic neutron scattering (QENS) experiments. For these test measurements at the new NRSE instrument RESEDA (FRM II, Munich), we have employed CASCADE, one of the fastest neutron detectors in the world, developed at the University of Heidelberg. Conventionally, scintillation detectors are used, in order to detect neutron intensities with high time resolution. In contrast, we used the new CASCADE detector converting neutrons in thin (10)B layers being capable of resolving neutron intensity modulations up to the megahertz regime. This fast detector allows us to abandon the last resonance flip coil of a standard NRSE setup. The classical spin echo signal is replaced by a time-modulated signal. In this setup, fast intensity modulations are present at the detector position. In order to demonstrate, that NRSE-CASCADE operates well up to detector frequencies of 10 MHz, we performed elastic polarization test measurements on a standard sample. The CASCADE detector is a multidetector accumulating counts in 128 × 128 pixels on a surface of 200 mm × 200 mm. We have analyzed the signal in 600 pixels, providing information about the spin phase reaching the detector and about the resolution function of this new variant tested at RESEDA.  相似文献   

20.
Numerical modeling of the neutron imaging system for the National Ignition Facility (NIF), forward from calculated target neutron emission to a camera image, will guide both the reduction of data and the future development of the system. Located 28 m from target chamber center, the system can produce two images at different neutron energies by gating on neutron arrival time. The brighter image, using neutrons near 14 MeV, reflects the size and symmetry of the implosion "hot spot." A second image in scattered neutrons, 10-12 MeV, reflects the size and symmetry of colder, denser fuel, but with only ~1%-7% of the neutrons. A misalignment of the pinhole assembly up to ±175?μm is covered by a set of 37 subapertures with different pointings. The model includes the variability of the pinhole point spread function across the field of view. Omega experiments provided absolute calibration, scintillator spatial broadening, and the level of residual light in the down-scattered image from the primary neutrons. Application of the model to light decay measurements of EJ399, BC422, BCF99-55, Xylene, DPAC-30, and Liquid A suggests that DPAC-30 and Liquid A would be preferred over the BCF99-55 scintillator chosen for the first NIF system, if they could be fabricated into detectors with sufficient resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号