首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The polo-box domain (PBD) of PLK1 determines mitotic substrate recognition and subcellular localization. Compounds that target PLK1 selectively are required due to the tumor-suppressor roles of PLK3. A structure-activity analysis of the PBD phosphopeptide binding motif has identified potent peptides that delineate the determinants required for mimicry by nonpeptidic inhibitors and provide insights into the structural basis for the selectivity of inhibitors for the PLK1 PBD. Fragment-ligated inhibitory peptides (FLIPs) obtained through REPLACE have been optimized to enhance in vitro binding and a systematic analysis of selectivity for PLK1 vs PLK3 has been carried out for peptides and peptidomimetics. Furthermore, these more drug-like non-ATP-competitive inhibitors had on-target engagement in a cellular context, as evidenced by stabilization of PLK1 in a thermal-shift assay and by inhibition of the phosphorylation of TCTP, a target of PLK1. Investigation in cells expressing a mutant PLK1 showed that these cells are sensitive to PBD inhibitors but dramatically resistant to clinically investigated ATP-competitive compounds. These results further validate targeting the PBD binding site in the move towards PLK1 inhibitors that are active against tumors resistant to ATP inhibitors.  相似文献   

2.
To dissect the determinants of protein insertion into membranes, we designed a model peptide which partitions between water and phospholipid bilayers as an alpha-helical monomer. We used a simplex method to optimize the 'a, d hydrophobicity' and 'e, g charge' of a series of five peptides, where 'abcdefg' correspond to the positions in two turns of an alpha-helix. Circular dichroism and analytical ultra- centrifugation experiments showed that the final peptide (helix5) is monomeric and has an alpha-helix content of approximately 89% at 0 degrees C in aqueous solution. In the presence of large unilamellar vesicles (LUVs), helix5 partitions between the aqueous and membranous phases with a partition constant well suited for measurements by electron paramagnetic resonance (EPR) spectroscopy. EPR power saturation experiments with a cysteine-scanning strategy showed that the alpha-helicity of helix5 is conserved upon binding to LUVs and that the alpha-helix binds parallel to the membrane surface with the central axis approximately 5 A below the lipid phosphate groups. Helix5 should be a useful model peptide for studies aimed at dissecting the determinants of the membrane binding of alpha-helices. The simplex- based strategy may be useful in the rational design of proteins when desired structural or partitioning properties cannot be selected or screened from libraries.   相似文献   

3.
Assay design is an important variable that influences the outcome of an inhibitor screen. Here, we have investigated the hypothesis that protein tyrosine phosphatase inhibitors with improved biological activity could be identified from a screen by using a biologically relevant peptide substrate, rather than traditional phosphotyrosine mimetic substrates. A 2000‐member library of drugs and drug‐like compounds was screened for inhibitors of lymphoid tyrosine phosphatase (LYP) by using both a peptide substrate (Ac‐ARLIEDNE‐pCAP‐TAREG‐NH2, peptide 1) and a small‐molecule phosphotyrosine mimetic substrate (difluoromethyl umbelliferyl phosphate, DiFMUP). The results demonstrate that compounds that inhibited enzyme activity on the peptide substrate had greater biological activity than compounds that only inhibited enzyme activity on DiFMUP. Finally, epigallocatechin‐3,5‐digallate was identified as the most potent inhibitor of lymphoid tyrosine phosphatase activity to date, with an IC50 of 50 nM and significant activity in T‐cells. Molecular docking simulations provided a first model for binding of this potent inhibitor to LYP; this will constitute the platform for ongoing lead optimization efforts.  相似文献   

4.
We present a new approach for the covalent inhibition of HIV‐1 integrase (IN) by an LEDGF/p75‐derived peptide modified with an N‐terminal succinimide group. The covalent inhibition is mediated by direct binding of the succinimide to the amine group of a lysine residue in IN. The peptide serves as a specific recognition sequence for the target protein, while the succinimide serves as the binding moiety. The combination of a readily synthesizable peptide precursor with easy and efficient binding to the target protein makes this approach a promising new strategy for designing lead compounds.  相似文献   

5.
4EGI‐1, the prototypic inhibitor of eIF4E/eIF4G interaction, was identified in a high‐throughput screening of small‐molecule libraries with the aid of a fluorescence polarization assay that measures inhibition of binding of an eIF4G‐derived peptide to recombinant eIF4E. As such, the molecular probe 4EGI‐1 has potential for the study of molecular mechanisms involved in human disorders characterized by loss of physiological restraints on translation initiation. A hit‐to‐lead optimization campaign was carried out to overcome the configurational instability in 4EGI‐1, which stems from the E‐to‐Z isomerization of the hydrazone function. We identified compound 1 a , in which the labile hydrazone was incorporated into a rigid indazole scaffold, as a promising rigidified 4EGI‐1 mimetic lead. In a structure–activity relationship study directed towards probing the structural latitude of this new chemotype as an inhibitor of eIF4E/eIF4G interaction and translation initiation we identified 1 d , an indazole‐based 4EGI‐1 mimetic, as a new and improved lead inhibitor of eIF4E/eIF4G interaction and a promising molecular probe candidate for elucidation of the role of cap‐dependent translation initiation in a host of pathophysiological states.  相似文献   

6.
Kinase inhibitors are increasingly important in drug development. Because the majority of current inhibitors target the conserved ATP‐binding site, selectivity might become an important issue. This could be particularly problematic for the potential drug target protein kinase C (PKC), of which twelve isoforms with high homology exist in humans. A strategy to increase selectivity is to prepare bisubstrate‐based inhibitors that target the more selective peptide‐binding site in addition to the ATP‐binding site. In this paper a generally applicable, rapid methodology is presented to discover such bisubstrate‐based leads. Dynamic peptide microarrays were used to find peptide‐binding site inhibitors. These were linked with chemoselective click chemistry to an ATP‐binding site inhibitor, and this led to novel bisubstrate structures. The peptide microarrays were used to evaluate the resulting inhibitors. Thus, novel bisubstrate‐based inhibitors were obtained that were both more potent and selective compared to their constituent parts. The most promising inhibitor has nanomolar affinity and selectivity towards PKCθ amongst three isozymes.  相似文献   

7.
Kinases present an attractive target for drug development, since they are involved in vital cellular processes and are implicated in a variety of diseases, such as cancer and diabetes. However, obtaining selectivity for a specific kinase over others is difficult since many current kinase inhibitors exclusively target the highly conserved kinase ATP binding domain. Previously, a microarray‐based strategy to discover so‐called bisubstrate‐based inhibitors that target the more specific peptide binding groove in addition to the ATP binding site was described. One attractive feature of this strategy is the opportunity to tune the selectivity of these inhibitors by systematically varying components. In an extension to this previous work, this study explores the potential of this guided selectivity modulation, leading to a series of inhibitors with different selectivity profiles against highly homologous protein kinase C (PKC) isozymes. Of the inhibitors studied, most exhibited improved potency and selectivity compared with their constituent parts. Furthermore, the selectivity was found to be tunable either through modification of the pseudosubstrate peptide (peptide binding groove) or the ATP‐competitive part (ATP binding site). In a number of cases, the selectivity of the construct could be predicted from the initial peptide substrate profiling experiment. Since this strategy is applicable to all kinase sets, it could be used to rapidly develop uniquely selective inhibitors.  相似文献   

8.
We identified a lead series of p38 mitogen-activated protein kinase inhibitors using a structure-based design strategy from high-throughput screening of hit compound 1 . X-ray crystallography of 1 with the kinase showed an infrequent flip of the peptide bond between Met109 and Gly110, which was considered to lead to high kinase selectivity. Our structure-based design strategy was to conduct scaffold transformation of 1 with maintenance of hydrogen bond interactions with the flipped hinge backbone of the enzyme. In accordance with this strategy, we focused on scaffold transformation to identify imidazo[4,5-b]pyridin-2-one derivatives as potent inhibitors of the p38 MAP kinase. Of the compounds evaluated, 21 was found to be a potent inhibitor of the p38 MAP kinase, lipopolysaccharide-induced tumor necrosis factor-α (TNF-α) production in human monocytic leukemia cells, and TNF-α-induced production of interleukin-8 in human whole blood cells. Herein we describe the discovery of potent and orally bioavailable imidazo[4,5-b]pyridin-2-one-based p38 MAP kinase inhibitors that suppressed cytokine production in a human whole blood cell-based assay.  相似文献   

9.
More than 50 new inhibitors of the oncogenic Stat3 protein were identified through a structure–activity relationship (SAR) study based on the previously identified inhibitor S3I‐201 (IC50=86 μM , Ki>300 μM ). A key structural feature of these inhibitors is a salicylic acid moiety, which, by acting as a phosphotyrosine mimetic, is believed to facilitate binding to the Stat3 SH2 domain. Several of the analogues exhibit higher potency than the lead compound in inhibiting Stat3 DNA binding activity, with an in vitro IC50 range of 18.7–51.9 μM , and disruption of Stat3–pTyr peptide interactions with Ki values in the 15.5–41 μM range. One agent in particular exhibited potent inhibition of Stat3 phosphorylation in both breast and multiple myeloma tumor cells, suppressed the expression of Stat3 target genes, and induced antitumor effects in tumor cells harboring activated Stat3 protein.  相似文献   

10.
Urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are two serine proteases that contribute to initiating fibrinolysis by activating plasminogen. uPA is also an important tumour-associated protease due to its role in extracellular matrix remodelling. Overexpression of uPA has been identified in several different cancers and uPA inhibition has been reported as a promising therapeutic strategy. Although several peptide-based uPA inhibitors have been developed, the extent to which uPA tolerates different tetrapeptide sequences that span the P1–P4 positions remains to be thoroughly explored. In this study, we screened a sequence-defined peptide aldehyde library against uPA and tPA. Preferred sequences from the library screen yielded potent inhibitors for uPA, led by Ac-GTAR-H (Ki=18 nm ), but not for tPA. Additionally, synthetic peptide substrates corresponding to preferred inhibitor sequences were cleaved with high catalytic efficiency by uPA but not by tPA. These findings provide new insights into the binding specificity of uPA and tPA and the relative activity of tetrapeptide inhibitors and substrates against these enzymes.  相似文献   

11.
Although helices play key roles in peptide–protein and protein–protein interactions, the helical conformation is generally unstable for short peptides (10–15 residues) in aqueous solution in the absence of their binding partners. Thus, stabilizing the helical conformation of peptides can lead to increases in binding potency, specificity, and stability towards proteolytic degradation. Helices have been successfully stabilized by introducing side chain‐to‐side chain crosslinks within the central portion of the helix. However, this approach leaves the ends of the helix free, thus leading to fraying and exposure of the non‐hydrogen‐bonded amide groups to solvent. Here, we develop a “capped‐strapped” peptide strategy to stabilize helices by embedding the entire length of the helix within a macrocycle, which also includes a semirigid organic template as well as end‐capping interactions. We have designed a ten‐residue capped‐strapped helical peptide that behaves like a miniprotein, with a cooperative thermal unfolding transition and Tm≈70 °C, unprecedented for helical peptides of this length. The NMR structure determination confirmed the design, and X‐ray crystallography revealed a novel quaternary structure with implications for foldamer design.  相似文献   

12.
The pregnancy-associated glycoproteins (PAGs) are secretoryproducts synthesized by the outer epithelial cell layer (chorion)of the placentas of various ungulate species. The amino acidsequences of eight PAGs have been inferred from cloned cDNAof cattle and sheep, as well as of the non-ruminant pig andhorse. We compare the PAG sequences and present results of thethree-dimensional models of boPAG-1 and ovPAG-1 that were constructedon the basis of the crystal structures of homologous porcinepepsin and bovine chymosin using a rule-based comparative modellingapproach. Further, we compare peptide binding subsites definedby interactions with pepstatin and a decapeptide inhibitor (CH-66)modelled on the basis of crystal structures of other asparticproteinases. We have extended our analysis of the peptide bindingsubsites to the other PAG molecules of known sequence by aligningthe PAG sequences to the structural template derived from thepepsin family and by making use of the three-dimensional modelsof the boPAG-1 and ovPAG-1. The residues that are likely toaffect peptide binding in the boPAG-1, ovPAG-1 and other PAGmolecules have been identified. Sequence comparisons revealthat all PAG molecules may have evolved from a pepsin-like progenitormolecule with the equine PAG most closely related to the pepsins.The presence of substitutions at the S1 and other subsites relativeto pepsin make it unlikely that either bovine, ovine or theporcine PAG-1 have catalytic activity. Only two of the eightPAGs examined (porcine PAG-2 and equine PAG-1) retain featuresof active aspartic proteinases with pepsin-like activity. Ourresults indicate that in the PAGs so far characterized the peptidebinding specificities differ significantly from each other andfrom pepsin, despite their high sequence identities. Analysisof the various peptide binding subsites demonstrates why bothbovine and ovine PAG-1 are capable of binding pepstatin. Thestrong negative charge in the binding cleft of boPAG-1 and ovPAG-1indicates a preference for lysine- or arginine-rich peptides.PAGs represent a family where the possible peptide binding functionmay be retained through their binding specificities, but wherethe catalytic activity may be lost in some cases, such as theboPAG-1, ovPAG-1 and the poPAG-1.  相似文献   

13.
Liu Y  Ke Z  Wu KY  Liu S  Chen WH  Jiang S  Jiang ZH 《ChemMedChem》2011,6(9):1654-1664
Exploration of potent inhibitors of the HIV-1 gp41 fusion core formation is a promising strategy to discover small-molecule HIV-1 entry inhibitors for the treatment of HIV-1 infection. In this paper, a series of novel betulinic acid-polyphenol conjugates was designed, guided by molecular modeling of the binding of betulinic acid (BA) and phenolic galloyl/caffeoyl groups in the groove on the gp41 N-terminal heptad repeat (NHR) trimeric coiled coil. These conjugates were synthesized via conjugation of galloyl and caffeoyl groups with BA at the C-28 position. Their inhibitory activities of HIV gp41 six-helix bundle (6-HB) formation between the NHR peptide N36 and the C-terminal heptad repeat (CHR) peptide C34 were evaluated with size-exclusion HPLC. Conjugates bearing a galloyl group were found to exhibit four to sixfold higher inhibitory activities than that of parent compound BA, suggesting that they may be exploitable as HIV-1 fusion/entry inhibitors targeting gp41. The docking study on BA and its derivatives suggests that hydrophobic and hydrogen-bonding pockets exist in the groove of the gp41 NHR trimeric coiled coil and that a potent inhibitor should have amphiphilic structures to cooperatively interact with both pockets. This possibility was explored by incorporating both lipophilic and hydrophilic groups into the conjugates in a well-defined orientation to bind with both pockets in the gp41 NHR-trimer.  相似文献   

14.
Minimal sequence requirements for binding of substrate-derived statine peptides to the aspartyl enzyme were established on the basis of the X-ray cocrystal structure of the hydroxyethylene-octapeptide OM00-3 in complexation with BACE-1. With this information to hand, macrocyclic compounds that conformationally restrict and preorganize the peptide backbone for an entropically favoured binding to the enzyme active site cleft were designed. By means of a side chain-to-side chain ring closure between two aspartyl residues in the P2 and P3' positions through phenylene-1,3-dimethanamine, a 23-membered ring structure was obtained; this structure retained an extended conformation of the peptide backbone, including the transition state analogue statine for tight interactions with the two aspartyl residues of the active centre. The conformational preorganization of the inhibitor molecule was verified by NMR structural analysis and was then confirmed by the crystal structure of the BACE-1/inhibitor complex. Detailed insights into the binding mode of this macrocyclic inhibitor explained its moderate binding affinity in cell-free assays (K(i)=2.5 microM) and yielded precious information for possible structural optimization in view of the lack of steric clashes of the macrocycle with the flap domain of the enzyme.  相似文献   

15.
目的利用噬菌体随机肽库技术筛选趋化因子受体5(CCchemokine receptor 5,CCR5)单克隆抗体的识别表位。方法用抗CCR5单克隆抗体筛选噬菌体随机12肽库,采用双抗体夹心ELISA法鉴定噬菌体阳性克隆,挑取阳性克隆测定DNA序列,推导其氨基酸序列并进行同源性分析。结果从噬菌体随机12肽库中筛选出30株可与抗CCR5单抗特异结合的噬菌体克隆,其中多数克隆呈现核心序列HY-TC-SS-XX-P/FYS-X,该序列与CCR5的一级序列ECL2具有一定的同源性。结论 HY-TC-SS-XX-P/FYS-X序列是抗CCR5单抗的识别表位。  相似文献   

16.
A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been identified as the pathogen responsible for the outbreak of a severe, rapidly developing pneumonia (Coronavirus disease 2019, COVID-19). The virus enzyme, called 3CLpro or main protease (Mpro), is essential for viral replication, making it a most promising target for antiviral drug development. Recently, we adopted the drug repurposing as appropriate strategy to give fast response to global COVID-19 epidemic, by demonstrating that the zonulin octapeptide inhibitor AT1001 (Larazotide acetate) binds Mpro catalytic domain. Thus, in the present study we tried to investigate the antiviral activity of AT1001, along with five derivatives, by cell-based assays. Our results provide with the identification of AT1001 peptide molecular framework for lead optimization step to develop new generations of antiviral agents of SARS-CoV-2 with an improved biological activity, expanding the chance for success in clinical trials.  相似文献   

17.
SETD3 was recently identified as the histidine methyltransferase responsible for N3-methylation of His73 of β-actin in humans. Overexpression of SETD3 is associated with several diseases, including breast cancer. Here, we report a development of actin-based peptidomimetics as inhibitors of recombinantly expressed human SETD3. Substitution of His73 by simple natural and unnatural amino acids led to selected β-actin peptides with high potency against SETD3 in MALDI-TOF MS assays. The selenomethionine-containing β-actin peptide was found to be the most potent SETD3 inhibitor (IC50=161 nM). Supporting our inhibition assays, a combination of computational docking and molecular dynamics simulations revealed that the His73 binding pocket for β-actin in SETD3 is rigid and accommodates the inhibitor peptides with similar binding modes. Collectively, our work demonstrates that actin-based peptidomimetics can act as potent SETD3 inhibitors and provide a basis for further development of highly potent and selective inhibitors of SETD3.  相似文献   

18.
Inhibition of p53-MDM2/MDMX interaction is considered to be a promising strategy for anticancer drug design to activate wild-type p53 in tumors. We carry out molecular dynamics (MD) simulations to study the binding mechanisms of peptide and non-peptide inhibitors to MDM2/MDMX. The rank of binding free energies calculated by molecular mechanics generalized Born surface area (MM-GBSA) method agrees with one of the experimental values. The results suggest that van der Waals energy drives two kinds of inhibitors to MDM2/MDMX. We also find that the peptide inhibitors can produce more interaction contacts with MDM2/MDMX than the non-peptide inhibitors. Binding mode predictions based on the inhibitor-residue interactions show that the π-π, CH-π and CH-CH interactions dominated by shape complimentarity, govern the binding of the inhibitors in the hydrophobic cleft of MDM2/MDMX. Our studies confirm the residue Tyr99 in MDMX can generate a steric clash with the inhibitors due to energy and structure. This finding may theoretically provide help to develop potent dual-specific or MDMX inhibitors.  相似文献   

19.
Rapid diversity-oriented microplate library synthesis and in situ screening with a high-throughput fluorescence-based assay were used to develop potent inhibitors of beta-arylsulfotransferase IV (beta-AST-IV). This strategy leads to facile inhibitor synthesis and study as it allows protecting-group manipulation and product isolation from other library components to be avoided. Through repeated library formation, three aspects of inhibitor makeup, the identities of the two binding groups and the length of the linker between them, were independently optimized. Several potent inhibitors were obtained, one of which was determined to have an inhibition constant K(i) of 5 nM. This compound is the most potent beta-AST-IV inhibitor developed to date, with a K(i) value more than five orders of magnitude lower than the Michaelis constant K(m) for the substrate whose binding it inhibits.  相似文献   

20.
In this study, we utilized human DNA topoisomerase IIα as a model target to outline a dynophore-based approach to catalytic inhibitor design. Based on MD simulations of a known catalytic inhibitor and the native ATP ligand analog, AMP-PNP, we derived a joint dynophore model that supplements the static structure-based-pharmacophore information with a dynamic component. Subsequently, derived pharmacophore models were employed in a virtual screening campaign of a library of natural compounds. Experimental evaluation identified flavonoid compounds with promising topoisomerase IIα catalytic inhibition and binding studies confirmed interaction with the ATPase domain. We constructed a binding model through docking and extensively investigated it with molecular dynamics MD simulations, essential dynamics, and MM-GBSA free energy calculations, thus reconnecting the new results to the initial dynophore-based screening model. We not only demonstrate a new design strategy that incorporates a dynamic component of molecular recognition, but also highlight new derivates in the established flavonoid class of topoisomerase II inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号