首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanosized ZnO particles are successfully synthesized via mechanical activation of a zinc nitrate hydroxide hydrate (Zn5(NO3)2(OH)8·2H2O) precursor in NaCl matrix for 15 h. The ZnO particles obtained are in the nanosize range of ∼20 nm, with a well-established hexagonal morphology. They compare favorably with those derived from conventional calcination of the precursor. The decomposition of Zn5(NO3)2(OH)8·2H2O precursor and formation of nanocrystalline ZnO cannot be completed by mechanical activation in the absence of NaCl, which acts as both an effective dispersing matrix and drying agent although it remains chemically inert during mechanical activation. The powder derived from calcination at 400°C does not possess powder characteristics comparable to that of the powder derived from the mechanical activation in NaCl, because of the extensive particle coarsening and aggregation at the calcination temperature.  相似文献   

2.
Nanometer-sized Al2O3 particles were successfully synthesized as crystalline inclusions by mixing both components to form the nanometer-sized particles and the (Sc,Lu)2(WO4)3 matrices in a crystal lattice by preparing a solid solution of (Sc,Lu)2(WO4)3 and Al2(MoO4)3 and then decomposing the solid solution. The particles were dispersed uniformly and without agglomeration, which is commonly observed with conventional preparation techniques. The average particle size of the Al2O3 was 3.5 nm, and the standard deviation was estimated to be 1.1 nm.  相似文献   

3.
Nanocrystalline α-Si3N4 powders have been prepared with a yield of 93% by the reaction of Mg2Si with NH4Cl in the temperature range of 450° to 600°C in an autoclave. X-ray diffraction patterns of the products can be indexed as the α-Si3N4 with the lattice constants a = 7.770 and c = 5.627 Å. X-ray photoelectron spectroscopy analysis indicates that the composition of the α-Si3N4 samples has a Si:N ratio of 0.756. Transmission electron microscopy images show that the α-Si3N4 crystallites prepared at 450°, 500°, and 550°C are particles of about 20, 40, and 70 nm in average, respectively.  相似文献   

4.
A sol–gel process to unsophisticatedly synthesize Ba(Mg1/3Ta2/3)O3 (BMT) ceramics at low cost has been developed in the present work. This process involves the reaction of TaCl5 with acetates of Ba and Mg in the presence of citric acid. Pure BMT polycrystalline powders can be obtained by calcining the synthesized products at 1000°C. The BMT powders were found to have a primary particle size as small as 100 nm. BMT ceramics with favorable structural characteristics can be obtained from sintering of the sol–gel BMT at temperatures much lower than that for the conventional solid-state BMT. Sintering the sol–gel BMT in pellet form at 1300°C resulted in an ordering parameter of 0.72 for the pellet, and a relative density of >95% was achieved with sintering at 1500°C. The grain size of the sintered sol–gel BMT was large and uniform in comparison with the products from the solid-state method. Using the sol–gel route, sintering at temperatures as low as 1400°C gave ceramics with acceptable microwave dielectric properties (a dielectric constant of 16 and Qf factor of 14 400 GHz), while higher temperatures (>1600°C) are needed for the solid-state route to give similar properties.  相似文献   

5.
The heteronuclear LaMn(dhbaen)(OH)(NO3)(H2O)4 complex was synthesized and perovskite-type hexagonal LaMnO3 was obtained by its thermal decomposition at approximately 700°C. The complex and its decomposition products were analyzed using simultaneous thermogravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, Auger electron spectroscopy (AES), transmission electron microscopy (TEM) characterization, and specific surface area measurements. Although XRD analysis did not show the peaks of LaMnO3 for the sample sintered at 600°C, the presence of polycrystalline LaMnO3 together with an amorphous phase was confirmed by TEM-selected area diffraction. Particle sizes of the samples decomposed at 600° and 700°C were 20 and 50 nm, respectively. For the conventional solid-state reaction method, XRD results showed the formation of a LaMnO3 single phase for the samples fired above 1000°C. However, AES showed that the elemental distributions of La, Mn, and O on the surface were not homogeneous even for the sample sintered at 1200°C. The thermal decomposition of the heteronuclear complex at low temperatures allows the synthesis of single-phase hexagonal LaMnO3 powders having nanosized particles, homogeneous and free of intragranular pores, which are suitable for electroceramics applications.  相似文献   

6.
Phase-pure perovskite Pb(Zn x Mg1– x )1/3Nb2/3O3 solid solution (PZ x M1– x N) is obtained for x ≦ 0.7 by heating a milled stoichiometric mixture of PbO, Mg(OH)2, Nb2O5, and 2ZnCO3·3Zn(OH)2·H2O at 1100°C for 1 h. Percent perovskite ( f P) with respect to total crystalline phase decreases with increasing temperature of subsequent heating then increases to 900°C for the mixtures where x ≦ 0.8 and milled for 3 h. For mixtures with x = 0.9 and x = 1, f P decreases monotonically. Curie temperature increases almost linearly with increasing x up to x = 0.7. The maximum dielectric constant at 1 kHz is 2×104 and 1.7×104 for the mixture with x = 0.4 and x = 0.7, respectively. The stabilization mechanism of strained perovskite is discussed.  相似文献   

7.
The synthesis and densification of fairly dense nanocrystalline SrTiO3 and its characterization are described in this paper in detail. Significant grain growth was avoided by the application of a two-stage sintering process using hot pressing. High-resolution transmission electron microscopy and electron energy loss spectroscopy characterizations indicate pure material with no detectable chemical inhomogeneities. The electrical measurements indicate the disappearance of bulk contribution to the electrical conduction due to the overlap of depleted space charge layers if the grain size is below 100 nm. Owing to the overlap, the capacitance appears as bulk-like rather than due to space charge polarization. Non-contact sub-millimeter optical spectroscopy measurements reveal strong suppression of the dielectric constant values at low temperature.  相似文献   

8.
Submicrometer-sized, pure calcium hydroxyapatite (HA, (Ca10(PO4)6(OH)2)) and β-tricalcium phosphate (β-TCP, Ca3(PO4)2) bioceramic powders, that have been synthesized via chemical precipitation techniques, were used in the preparation of aqueous slurries that contained methyl cellulose to manufacture porous (70%–95% porosity) HA or β-TCP ceramics. The pore sizes in HA bioceramics of this study were 200–400 μm, whereas those of β-TCP bioceramics were 100–300 μm. The pore morphology and total porosity of the HA and β-TCP samples were investigated via scanning electron microscopy, water absorption, and computerized tomography.  相似文献   

9.
Nanocrystalline α-Al2O3 ceramic powders have been prepared from an aqueous solution of aluminum nitrate and sucrose. Soluble Al ion-sucrose solution forms the precursor material once it is completely dehydrated. Heat treatment of the dehydrated precursors at low temperature (600°C) results in the formation of porous single-phase α-Al2O3. The precursor and heat-treated powders have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and BET surface area analysis. The phase-pure nanocrystalline α-Al2O3 particles had an average specific surface area of >190 m2/g, with an average pore size between 18 and 25 nm.  相似文献   

10.
A transmission electron microscopy study has been carried out to understand the structural transformation mechanisms of decomposition of Mg(OH)2 and MgCO3 under vacuum. Both Mg(OH)2 and MgCO3 decompose topotactically to yield porous pseudomorphic MgO of normal structure with definite orientation relationships. The decomposition of Mg(OH)2 yields MgO with a single orientation relationship, but that of MgCO3 leads to one major and two minor orientation relationships with two, six, and three variants, respectively. The major orientation relationships in the formation of 2- to 3-nm cubic MgO particles are discussed in terms of a correlation between oxygen octahedra in the reactant solids. The small cubic MgO particles may aggregate spontaneously to reduce the excess surface energy and result in minute cracks.  相似文献   

11.
Rapid hardening of cement was achieved in the present study by adding a mechanically activated Al(OH)3–Ca(OH)2 mixture to the starting cement paste. Among the dominant parameters for hardening were the mechanical treatment time for the Al(OH)3 powder and the Al(OH)3/Ca(OH)2 ratio. The hardening mechanisms are discussed here in terms of the ionic concentration of the solution and the hydration products created when the Al(OH)3–Ca(OH)2 mixture was added to water. Mechanical activation of the Al(OH)3 powder accelerated dissolution into an aqueous alkaline solution and induced the formation of calcium aluminate hydration products. Those hydration products increased the compressive strength of the cement paste at a very early stage of hardening.  相似文献   

12.
13.
Here, we report a straightforward synthesis process to produce colloidal Eu3+-activated nanophosphors (NPs) for use as bioimaging probes. In this procedure, poly(ethylene glycol) serves as a high-boiling point solvent allowing for nanoscale particle formation as well as a convenient medium for solvent exchange and subsequent surface modification. The La(OH)3:Eu3+ NPs produced by this process were ~3.5 nm in diameter as determined by transmission electron microscopy. The NP surface was coated with aminopropyltriethoxysilane to provide chemical functionality for attachment of biological ligands, improve chemical stability and prevent surface quenching of luminescent centers. Photoluminescence spectroscopy of the NPs displayed emission peaks at 597 and 615 nm (λex = 280 nm). The red emission, due to 5D07F1 and 5D07F2 transitions, was linear with concentration as observed by imaging with a conventional bioimaging system. To demonstrate the feasibility of these NPs to serve as optical probes in biological applications, an in vitro experiment was performed with HeLa cells. NP emission was observed in the cells by fluorescence microscopy. In addition, the NPs displayed no cytotoxicity over the course of a 48-h MTT cell viability assay. These results suggest that La(OH)3:Eu3+ NPs possess the potential to serve as a luminescent bioimaging probe.  相似文献   

14.
Monodisperse porous SrTiO3 spheres with an average size of ca. 200 nm were synthesized via a hydrothermal route in the presence of poly vinyl alcohol (PVA). Characterization techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, SAED, and high-resolution transmission electron microscopy were used to investigate the products. The results showed that these porous spheres were compared of small primary nanocrystals and pores were formed among them. The nanocrystal and pore diameters increased as the reaction time proceeded. It was suggested that the PVA played an important role in the mesoporous sphere's formation by means of preventing nanocrystal growth through a capping effect.  相似文献   

15.
Perovskite Pb(Fe2/3W1/3)O3 (PFW) was prepared via a mechanical activation-assisted synthesis route from mixed oxides of PbO, Fe2O3, and WO3. The mechanically activated oxide mixture, which exhibited a specific area of >10 m2/g, underwent phase conversion from nanocrystalline lead tungstate (PbWO4) and pyrochlore (Pb2FeWO6.5) phases on sintering to yield perovskite PFW, although the formation of perovskite phase was not triggered by mechanical activation. When heated to 700°C, >98% perovskite phase was formed in the mechanically activated oxide mixture. The perovskite phase was sintered to a density of ∼99% of theoretical density at 870°C for 2 h. The sintered PFW exhibited a dielectric constant of 9800 at 10 kHz, which was ∼30% higher than that of the PFW derived from the oxide mixture that was not subjected to mechanical activation.  相似文献   

16.
The NZP family of new low-expansion materials has attracted wide interest for its potential in advanced technological applications. NaZr2P3O12, which is the parent composition of this family, has been synthesized by the solution sol-gel method using special precursor solutions, which led to its formation (although poorly crystalline) at temperatures as low as 120°C. The lowest temperature of formation of a single phase of NaZr2P3O12 with a high degree of crystallinity was found to be 600°C.  相似文献   

17.
Silver and gold nanoparticles were synthesized by the sol–gel process in SiO2, TiO2, and ZrO2 thin films. A versatile method, based on the use of coordination chemistry, is presented for stabilizing Ag+ and Au3+ ions in sol–gel systems. Various ligands of the metal ions were tested, and for each system it was possible to find a suitable ligand capable of stabilizing the metal ions and preventing gold precipitation onto the film surface. Thin films were prepared by spin-coating onto glass or fused silica substrates and then heat-treated at various temperatures in air or H2 atmosphere for nucleating the metal nanoparticles. The Ag particle size was about 10 nm after heating the SiO2 film at 600°C and the TiO2 and ZrO2 films at 500°C. After heat treatment at 500°C, the Au particle size was 13 and 17 nm in the TiO2 and ZrO2 films, respectively. The films were characterized by UV–vis optical absorption spectroscopy and X-ray diffraction, for studying the nucleation and the growth of the metal nanoparticles. The results are discussed with regard to the embedding matrix, the temperature, and the atmosphere of the heat treatment, and it is concluded that crystallization of TiO2 and ZrO2 films may hinder the growth of Ag and Au particles.  相似文献   

18.
Nanocrystalline MgAl2O4 spinel powder was synthesized by pyrolysis of complex compounds of aluminum and magnesium with triethanolamine (TEA). The soluble metal ion–TEA complexes formed the precursor material on complete dehydration of the complexes of aluminum–TEA and magnesium–TEA. Single-phase MgAl2O4 spinel powder resulted after heat treatment of the precursor material at 675°C. The precursor and the heat-treated powders were characterized by X-ray diffractometry (XRD), differential thermal and thermogravimetric analysis, and transmission electron microscopy (TEM). The average crystallite size as measured from the X-ray line broadening was around 14 nm and the average particle size from TEM studies was around 20 nm.  相似文献   

19.
Lead zinc niobate–lead magnesium niobate–lead titanate (PZN–PMN–PT) ceramic powders of perovskite structure have been prepared via a mechanochemical processing route. A single-phase perovskite powder of ultrafine particles in the nanometer range was successfully synthesized when a MZN powder (columbite precursor) was mechanically activated for 10 h together with mixed lead and titanium oxides. The following steps are involved when the ternary oxide mixture is subjected to an increasing degree of mechanical activation. First, the starting materials are significantly refined in particle size as a result of the continuous deformation, fragmentation and then partially amorphized at the initial stage of mechanical activation. This is followed by the formation of perovskite nuclei and subsequent growth of these nuclei in the activated oxide matrix with increasing activation time. When calcined at various temperatures in the range of 500–800°C, pyrochlore phase was not detected by XRD phase analysis in the mechanochemically synthesized powder. Only a minor amount (∼2%) of pyrochlore phase was observed when the calcination temperature was raised to 850°C. The PZN–PMN–PT derived from the mechanochemically synthesized powder can be sintered to ∼98% relative density at a sintering temperature of 950°C. The PZN–PMN–PT sintered at 1100°C for 1 h exhibits a dielectric constant of ∼18 600 and a dielectric loss of 0.015 at the Curie temperature of 112°C when measured at a frequency of 0.1 kHz, together with a d 33 value of 323 ×10−12 pC/N.  相似文献   

20.
Crystal growth of rod-shaped β-LiAlO2 was previously reported by us, and the rod-shaped β-LiAlO2 crystals were 1.5 μ in diameter and 10 to 15 μm long. In the present study needle-shaped β-LiAlO2 crystals which were thinner and had larger aspect ratios (length/diameter) than the rodshaped β-LiAlO2 crystals were grown by using LiOH–Al2O3–Al(OH)3–NaOH as the raw material. These crystals were 0.7 to 1 μm in diameter, 9 to 13 μm long, and had aspect ratios of about 10 to 13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号