首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite various fertilizer recommendations, maize (Zea mays L.) yields in tropical forest and savanna zones are very low. These low yields could be attributed in part to the exclusion of some secondary and all micro nutrients in fertilizer recommendations for maize, a condition which often leads to nutrient imbalance. The inclusion of some secondary and micro nutrients in fertilizer recommendation for successful maize cultivation in this zone has been suggested [2, 16] but no one has proposed a balanced nutrient program for this purpose. Field trials were therefore conducted to investigate the potential for improving maize yields by fertilizing soils of different parent materials with both macro and micro nutrients in three ecological zones of maize production in south western Nigeria.The study has indicated that in addition to NPK, Mg was necessary for high yield of maize on forest soils derived from sedimentary materials while on forest and savanna soils formed from basement complex rocks, inclusion of Mg, Fe, Cu and Zn to NPK was required. This was further confirmed with ear leaf tissue and soil analyses. High nutrient concentration in earleaf does not necessarily guarantee high yield of maize. It is therefore concluded that there is a need for soil testing program in this region.  相似文献   

2.
The prolamins (zeins) are the main storage proteins in the maize grain. There are limited investigations related to their participation on tortilla texture. For determining their effect, normal (6) and Quality Protein Maize (QPM) (6) genotypes were used. The chemical variables comprised prolamins, amylose and starch in whole grain and endosperm. Viscosity of the raw endosperm flour was determined as well as the tortilla texture, expressed in terms of tension force and elongation. Prolamin content in the normal maizes was 64 % higher than that in the QPMs. It was not observed any relationship between prolamin content and flour viscosity. The prolamin content was not related with tortilla hardness, measured as the tension force to rupture the tortilla, but a negative correlation was observed with tortilla elongation. The tortillas with the best texture characteristics were from H-161 nomal maize and H-143 QPM maize, both genotypes showed the smallest grain in its respective gruop. According to the results obtained in the present work, a high prolamin content in maize grain could be affecting tortilla elongation.  相似文献   

3.
The effectiveness ofLeucaena leucocephala (Lam.) de Wit, prunings as N source for maize (Zea mays L.) was evaluated in field and pot trials at Ibadan, southern Nigeria. An N deficient, sandy Apomu soil (Psammentic Usthorthent) was used. The prunings significantly increased N uptake of seedlings and N percentage in ear leaves of maize. High maize gain yield was obtained with application of 10 tons fresh prunings or a combination of 5 tons fresh prunings and N at 50 kg ha–1. The prunings as N source, appeared to be more effective when incorporated in the soil than when applied as mulch. In the pot trial, prunings applied two weeks before planting was more effective than when applied at time of planting maize. Under screen house conditions, the apparent N recovery from prunings with early incorporation about equals that of fertilizer N.  相似文献   

4.
5.
Maize (Zea mays L.) tortilla is the primary staple food of the Mexican people, with annual consumption estimated at 12 millions tons. Despite this huge volume of consumption, tortillas are commercially produced with inconsistent quality, mainly in terms of texture characteristics. Different methods to evaluate the texture of maize tortillas have been reported, but the values obtained and their parameters have not yielded reliable results, largely because the methods used do not reflect homogeneous elements for comparison. In addition, evaluation of the reliability of methods for comparing tortilla texture as well as the equipment used has been difficult, as such information perhaps remains largely unpublished. In this study, the reliability of two tortilla sample shapes (rectangle and briquet) and some of the quality parameters (maximum force, total area under curve, area to reach maximum force, elasticity and elongation) from tensile and cut force tested with a texture meter were evaluated. According to the results, the briquet shape of the tortilla samples was better (than the rectangle shape) for determining tensile and elasticity. In regard to cutting force, both the rectangle and the briquet shape presented good repeatability. For tensile and cutting-force curves, the maximum force was the parameter with the highest reliability, 0.95 and 0.99, respectively. The elasticity showed an adequate reliability with the tortilla briquet shape (0.94). The evaluated parameters with the texture meter and the sample shape type briquet, showed a high reliability degree what makes possible the comparison of maize tortilla texture data.  相似文献   

6.
Field studies on the effect of nitrogen levels, plant population and soil nutrient status on maize yield and yield components at eight different sites representing six different ecological maize growing zones of Nigeria conducted during 1976, 1977 and 1978 indicated that N significantly influenced yield at six of the eight sites, NIFOR, Umudike and Uyo (rain forest zone), Mokwa and Samaru (Savanna zone) and Riyom (derived savanna zone). Optimum N required for maize varies between 50 and 100 kgN in the different zones. There was no response to spacing except at Umudike, Uyo and Riyom, and no significant interaction between N and spacing at any location. Nitrogen application significantly influenced earweight at Ikenne, NIFOR, Umudike, Uyo and Mokwa. Nitrogen application had a significant effect on the number of cobs at NIFOR, Uyo and Mokwa, while spacing significantly influenced number of cobs at all locations except Uyo. Husk weight was significantly increased by nitrogen application at four locations, NIFOR, Uyo, Mokwa and Samaru, but spacing had no effect on this yield component in any of the other locations except Umudike. There was an N by spacing interaction on husk weight at Umudike and Mokwa. Nitrogen application significantly influenced lodging at tasseling at Uyo, Mokwa and Riyom, whilst there was a significant effect of spacing at Uyo and Samaru. At harvest, lodging was not influenced by N application but spacing significantly affected lodging at Ibadan and NIFOR. Both N application and spacing had no significant effect on shelling percentage at any location. The high correlation between relative yield and available Zn(r = 0.77), Cu (r = 0.63) and Fe (r = ? 0.66) of the soil at all the locations has shown that:
  1. other nutrients besides N, P and K affected maize yield, therefore the inclusion of other nutrients besides N, P and K in the fertilizer recommendation for maize should be encouraged;
  2. different levels of NPK fertilizer plus other nutrients are required in each ecological zone and this can be determined by soil testing.
  相似文献   

7.
Nutrient Cycling in Agroecosystems - Zinc (Zn) deficiency with large phosphorus (P) application for plant nutrition is commonly an investigated antagonistic interaction. However, required P...  相似文献   

8.
Growth and yield components in field-grown maize (Zea mays L.) were enhanced by nitrogen fertilization ranging from 50 to 200 kg N ha–1. Ear diameter, kernel depth, grain: stover ratio, number of ears plant–1, plant height and dry matter production increased as N fertilization rate was increased up to 100 or 150 kg N ha–1. Tasselling in maize was hastened by N fertilization. Increasing plant density from 25000 to 75000 plants ha–1 increased plant height, dry matter production and delayed tasseling but reduced ear diameter, kernel depth, grain: stover ratio and number of ears plant–1. Increased N supply and plant density had no influence on the concentrations of Mn, Zn, Cu, and Fe in ear leaf; except that Mn concentration increased as N fertilization rate was increased up to 150 kg N ha–1. Nitrogen × plant density interactions on the concentrations of the micronutrients in maize ear leaf were not significant.  相似文献   

9.
Field experiments were conducted during wet season of 1980, 1981 and 1982 to determine the direct and residual effect of liming on yield and nutrient uptake of maize in moderately acid soils (pH -H2O; 5.0–5.4) at three locations viz Kontagora, Tumu and Yandev in the savanna zone of Nigeria. Maize crop was grown at five lime rates 0, 0.5, 1.0, 2.0 and 4.0 t ha–1 and two N sources (calcium ammonium nitrate and urea). Liming at a rate of 2 t ha–1 maintained high maize yield for three years after application at Kontagora and Yandev. At Tumu 1 t ha–1 was sufficient to get high yield of maize for three years. Higher rates of lime significantly depressed yield. Uptake of N, P and K was increased significantly with lime application upto 2 t ha–1 lime at Kontagora and Yandev but at Tumu it increased only upto 1 t ha–1. The response of P uptake to liming was higher in comparison to N and K uptake. Calcium and magnesium uptake responded upto 4 t ha–1 lime at Kontagora & Yandev and upto 2 t ha–1 at Tumu. The residual effect of liming lasted longer than 2 years. High lime rates reduced maize yields and crop nutrient uptake.  相似文献   

10.
The shortening of fallow period in several areas in tropical Africa has reduced soil fertility and exposed soils to erosion and run-off. Fertilizer application and crop conservation practices are needeed to sustain high crop yield and to conserve the natural resource base for upland crop production in the continent. Field trials were carried out to evaluate the effect of fertilizer application and soil and crop residues management practices on yield of maize (Zea mays L.) planted on a Plinthudult soil at Bertoua, Eastern Cameroon. Maize yields increased significantly with nitrogen and phosphorus fertilizer application. Under the rainfall pattern prevailing in the area, the amount of nitrogen required for maximum yield was higher in the second season. On the other hand, the amount of phosphorus required for maximum yield appeared to decrease with time. The burning of crop residues and weeds prior to planting together with no-till practive gave higher yield of maize than other soil and crop residues management practices.  相似文献   

11.
The polar lipids of a standard corn inbred, H51, were analyzed as the kernels developed. The concentrations of the glycolipids and phospholipids were highest at 30–45 days after pollination and then decreased. Digalactosyl diglyceride was the dominant glycolipid in the maturing grain. Monogalactosyl diglyceride and sulfolipid were also major sugar-containing lipids, but steryl glycoside ester, steryl glycoside and cerebrosides were relatively minor components. Phosphatidyl choline accounted for over 50% of the total phosphorus of the phospholipids at all stages of kernel development. Phosphatidyl ethanolamine and phosphatidyl inositol ranked second and third. Each individual lipid had its own characteristic fatty acid pattern, but the changes in fatty acid composition during development of the corn kernels were similar for all the lipids. The percentages of palmitic acid and linolenic acid decreased while those of oleic acid increased. Contribution from the Department of Agronomy, University of Illinois, and Crops Research Division, ARS, USDA.  相似文献   

12.
The kernel pericarp of a maize (Zea mays L.) inbred, Mp313E, that browns rapidly at milk stage when damaged and that is resistant toAspergillus flavus Link and the dusky sap beetleCarpophilus lugubris Murray compared to a susceptible inbred, SC212M, was examined for differing oxidizing enzymes (peroxidases) and their substrate specificity. Additional pericarp enzymes were constitutively produced by the Mp313E inbred compared to the SC212M inbred, as indicated by gel electrophoresis and isoelectric focusing. These enzymes oxidized relevent pericarp substrates such as ferulic acid. Similar results were seen with two varieties of maize containing theCh mutant gene, which brown upon senescence in that enhanced oxidation of ferulic acid was seen in homogenates of browned pericarp compared to that which was cold-shocked and did not brown. Corn powder that was browned by mixing oxidizing enzymes with corn pericarp components ferulic acid and coumaric acid were typically less preferred/more toxic to caterpillars such asHelicoverpa zea (Boddie) and sap beetles such asC. lugubris. Thus, enhanced browning of maize pericarp can promote resistance to insects and is at least partly influenced by the presence of oxidizing enzymes. This mechanism may also promote resistance to maize pathogens, including those that produce mycotoxins.  相似文献   

13.
Intercropping perennials with corn has the potential to improve utilization of the growing season over monocropping corn in regions where a substantial portion of the growing season is too cool for corn growth. The biomass potential and fertilizer N requirements of monocropped corn (Zea mays) grown using conventional tillage were compared with those of corn intercropped with alfalfa (Medicago sativa) in 1987 and 1988. The intercropped alfalfa was harvested once prior to planting the corn each spring. Rotation effects on and N fertilizer requirements for monocropped corn following these treatments and also following monocropped alfalfa, were evaluated in 1989 and 1990. During the two years of intercropping for which data is presented, the critical intercropped corn biomass (13.05 Mg ha–1) estimated using a quadratic-plus plateau model, was close to the monocropped corn biomass (13.01 Mg ha–1), but an estimated 83 kg ha–1 more N was required for intercropped corn to reach the critical biomass. Total biomass (intercropped corn and alfalfa) was 25% greater than that of the monocropped corn, and the total N uptake was 55% greater than that by monocropped corn over the two- year period. After rotation to monocropped corn using conventional tillage in 1989, corn biomass averaged over N rates following intercropping or monocropped corn was lower (P=0.01) than following monocropped alfalfa. Critical corn biomass estimated was highest following alfalfa and lowest following monocropped corn, and more N fertilizer was required to attain the critical biomass under continuous monocropped corn in 1989. Corn yields and N uptake values in 1990 were not significantly different among the cropping systems. The N fertilizer replacement values due to intercropping decreased from above 90 kg N ha–1 in the first year of rotation to less than 40 kg N ha–1 in the second year of rotation. Considering the higher potential for total biomass production and rotation benefit, intercropping is a viable alternative to conventional corn monoculture for forage production.  相似文献   

14.
Under low input subsistence farming systems, increased pressure on land use and decreased fallow periods have led to a decline in soil productivity. The soils in sub-humid region of Ghana are generally poor and require mineral fertilizer to increase crop productivity. This paper presents the use of Agricultural Production Systems sIMulator (APSIM) to simulate the long term influence of nitrogen (N) and phosphorus (P) on maize (Zea mays L.) yield in Sub-humid Ghana. The APSIM model was evaluated at two sites in Ejura, on a rainfed experiment carried out on maize in 2008 major and minor seasons, under various nitrogen and phosphorus rates. The model was able to reproduce the response of maize to water, N and P, and hence simulated maize grain yields with a coefficient of correlation (R2) of 0.90 and 0.88 for Obatanpa and Dorke cultivars, respectively. A 21-year long term simulation, with different rates of N and P mineral fertilizer application, revealed that moderate application of N (60?kg?N?ha?1) and 30?kg P ha?1 improves both the long term average and the minimum yearly guaranteed yield. Variability in grain yield increased with increasing application of N fertilizer in both seasons. Treatments with P fertilizer application shows a similar trend for the major season and reverse trend for the minor season, thereby suggesting an interactive effect with rainfall amounts and distribution. Application of 30?kg P ha?1 significantly increased the response to N. The response to mineral fertilizer (N and P) applications varied between seasons, suggesting the need to have a range of fertilizer recommendations to be applied based on seasonal weather forecast.  相似文献   

15.
Nitrogen is the most limiting plant nutrient in Vertisols in Kenya. Soil properties, climatic conditions and management factors as well as fertilizer characteristics can influence fertilizer nitrogen (N) use efficiency by crops. Vertisols, characterized by low-basic water infiltration rate, are prone to waterlogging under sub-humid and humid conditions. We determined effects of drainage, N source and time of application on yields, nutrient uptake and utilization efficiencies by maize grown on Vertisols in sub-humid environments. Treatments comprised two furrows (40 cm and 60 cm deep) and a check (i.e., no furrow), calcium nitrate to furnish NO3-N, ammonium sulphate to supply NH4-N at 100 kg N ha−1, a control (i.e., no fertilizer N), and fertilizer N application at sowing, 40 days after sowing, and split (i.e., half the rate at sowing and half 40 days after sowing). A split-plot design was used in which drainage formed the main plots and N source × time of N application formed the sub-plots. Higher grain and total dry matter yields, harvest index, leaf N content, uptake of N, P and K, as well as N agronomic (NAE) and recovery (NRE) efficiencies were obtained from drained compared to undrained plots. The increase ingrain yields as a result of drainage varied from 31 to 45% for control, 35 to 43% for NO3-N, and 16 to 21% for NH4-N treatments. Drainage resulted in total N uptake increases from 50 to 80 kg N ha−1 in control plots, 80 to 130 kg N ha−1 in NO3-N treated plots, and 90 to 130kg N ha−1 in NH4-N treated plots. Ammonium-N source was superior to NO3-N source in terms of higher yields, NAE, and NRE in undrained plots, but the two N sources behaved similarly in drained plots. Delayed or split NO3-N application gave higher yields, NAE and NRE than when all N was applied at sowing in undrained plots. There was no difference between 40 cm and 60 cm deep furrows in terms of crop yields and nutrient use efficiencies. Thus, draining excess water with furrows at least 40 cm deep is essential for successful crop production in these Vertisols under sub-humid conditions. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

16.
Nutrient Cycling in Agroecosystems - A correction to this paper has been published: https://doi.org/10.1007/s10705-021-10152-7  相似文献   

17.
Polygalacturonase (PG, EC 3.2.1.15) is a crucial enzyme for pectin degradation and is involved in various developmental processes such as fruit ripening, pollen development, cell expansion, and organ abscission. However, information on the PG gene family in the maize (Zea mays L.) genome and the specific members involved in maize anther development are still lacking. In this study, we identified 55 PG family genes from the maize genome and further characterized their evolutionary relationship and expression patterns. Phylogenetic analysis revealed that ZmPGs are grouped into six Clades, and gene structures of the same Clade are highly conserved, suggesting their functional conservation. The ZmPGs are randomly distributed across maize chromosomes, and collinearity analysis showed that many ZmPGs might be derived from tandem duplications and segmental duplications, and these genes are under purifying selection. Furthermore, gene expression analysis provided insights into possible functional divergence among ZmPGs. Based on the RNA-seq data analysis, we found that many ZmPGs are expressed in various tissues while 18 ZmPGs are highly expressed in maize anther, and their detailed expression profiles in different anther developmental stages were further investigated by using RT-qPCR analysis. These results provide valuable information for further functional characterization and application of the ZmPGs in maize.  相似文献   

18.
The aim of the present work was to determine the potential use of anthocyanins from maize grains as colorants in yogurt. Pigments were extracted from four native maize varieties (Arrocillo, Peruano, Purepecha and Cónico), which possess a high anthocyanin concentration in the pericarp. Pericarp and aleurone layer were mechanicallly removed from grain using a Strong-Scott barley pearled. Yields of pericarp and aleurone layer fraction (PALF) were evaluated. Total anthocyanin content in this fraction was determined by a conventional spectrophotometric method and the anthocyanin profile was obtained by HPLC. One mg of anthocyanin extracts from the PALF was added to 100 g of a commercial plain yogurt. Yogurt samples were kept under refrigerated conditions and color and pH were monitored every 5 days interval, during three weeks. The yields of PALF were 48.4%, 55.1%, 40.2%, and 40.0% for Arrocillo, Peruano, Cónico and Purepecha varieties, respectivelly. The highest total anthocyanin content (259.4 mg of anthocyanins/100 g sample) was observed in Peruano PALF. The color of yogurts dyed with each of the four extracts was different. Yogurts dyed with Peruano and Arrocillo extracts showed a more intense reddish tone than those dyed with Cónico and Purepecha. After 5 to 10 days under refrigerated storage, the color of all yogurt samples changed to a slight yellowish tone according to the Hue values, Nevertheless, these changes were not visually evident.  相似文献   

19.
National and regional efforts are underway to increase fertilizer use in sub-Saharan Africa, where attaining food security is a perennial challenge and mean fertilizer use in many countries is <10 % of nationally recommended rates. Increases in nitrogen (N) inputs will likely cause increased emissions of the greenhouse gas nitrous oxide (N2O). We established experimental plots with different rates of N applied to maize (Zea mays) in a field with a history of nutrient additions in western Kenya and measured N2O fluxes. Fertilizer was applied by hand at 0, 50, 75, 100, and 200 kg N ha?1 in a split application on March 22 and April 20, 2010. Gas sampling was conducted daily during the week following applications, and was otherwise collected weekly or biweekly until June 29, 2010. Cumulative fluxes were highest from the 200 kg N ha?1 treatment, with emissions of 810 g N2O–N ha?1; fluxes from other treatments ranged from 620 to 710 g N2O–N ha?1, but with no significant differences among treatments. Emissions of N2O during the 99-day measurement period represented <0.1 % of added fertilizer N for all treatments. Though limited to a single year, these results provide further evidence that African agricultural systems may have N2O emission factors substantially lower than the global mean.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号