首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对SiO_2凝胶的无机化与烧结特性进行了研究,结果表明:SiO_2凝胶为无定形结构;经500℃煅烧后,凝胶中Si-OH完全无机化,随着煅烧温度的继续升高,产物的结晶性逐渐增强,经1400℃煅烧后析出方石英;随着烧结温度的升高,SiO_2陶瓷的相对密度、弹性模量和硬度均逐渐升高。采用溶胶-凝胶工艺制备了三维铝硅酸盐纤维增强SiO_2复合材料,并对热处理温度进行了优化。研究表明:热处理温度为900℃时制备的复合材料的力学性能最优,其密度为1.97 g/cm~3,弯曲强度、剪切强度和断裂韧性分别为119.7±7.5 MPa、10.8±0.7 MPa和4.0±0.4 MPa·m~(1/2)。随着热处理温度的升高,复合材料断面拔出纤维长度逐渐缩短直至消失。  相似文献   

2.
采用溶胶-凝胶工艺制备2.5D SiO_(2f)/ SiO_2复合材料,并对工艺参数进行了优化.研究表明:以固含量为30.73 %的硅溶胶为浸渍浆料,采用微波干燥方式,烧结温度为900 ℃时制备的复合材料具有较好的性能.经过7个制备周期后,复合材料的密度为1.65 g/cm~3,此时弯曲强度最大,可达80.7 MPa;800 ℃下烧成的材料具有最大的剪切强度和断裂韧性,分别为56.6 MPa和3.5 MPa·m~(1/2).测得试样介电常数为3.4,较好的满足了天线罩材料的介电性能要求.  相似文献   

3.
以正硅酸乙酯、乙醇、去离子水、盐酸和氨水为原料制备出SiO_2凝胶后,经老化、表面改性、溶剂置换工艺,再通过常压干燥制备出SiO_2气凝胶,研究了表面改性及溶剂置换工艺对SiO_2气凝胶性能的影响.结果表明,随着表面改性次数和改性剂浓度的增加,气凝胶的密度和比表面积降低;溶剂置换对气凝胶的密度和比表面积影响不大.通过优化的工艺制备出的SiO_2气凝胶具有疏水性,与水的接触角约为118°,密度为0.124 g/cm~3,孔隙率94.3%,平均孔径为23.3 nm,比表面积712 m~2/g.  相似文献   

4.
采用先驱体聚合物浸渍裂解法(Preceramic polymer impregnation pyrolysis,PIP)制备了短切石英纤维增强氮化物基透波复合材料(SiO2f/Si3N4-BN),对复合材料的显微结构和界面特性进行了研究,探讨了短纤维增强氮化物基复合材料的强韧化机理。力学性能测试表明复合材料弯曲强度、断裂韧性和断裂应变分别达到56.6MPa,2-3MPa.m^1/2和0.462%,介电性能优良。扫描电镜(SEM)及选区能谱(EDS)分析结果表明,氮化物基体与短切石英纤维没有发生界面反应,界面结合适中,短纤维以纤维拔出及裂纹偏转的形式使基体增强和增韧。  相似文献   

5.
采用先驱体聚合物浸渍裂解法(Preceramic polymer impregnation pyrolysis,PIP)制备了短切石英纤维增强氮化物基透波复合材料(SiO2f/Si3N4-BN),对复合材料的显微结构和界面特性进行了研究,探讨了短纤维增强氮化物基复合材料的强韧化机理.力学性能测试表明复合材料弯曲强度、断裂韧性和断裂应变分别达到56.6 MPa,2.3 MPa·m1/2和0.462%,介电性能优良.扫描电镜(SEM)及选区能谱(EDS)分析结果表明,氮化物基体与短切石英纤维没有发生界面反应,界面结合适中,短纤维以纤维拔出及裂纹偏转的形式使基体增强和增韧.  相似文献   

6.
以裂解产物为Si3N4和BN混合物的聚硅硼氮烷(polyborosilazane,PSBZ)为先驱体,通过先驱体浸渍裂解(precursor infiltration and pyrolysis,PIP)工艺,制备了三维编织石英纤维增强Si3N4和BN混合物(3D SiO2f氮化物)复合材料。对材料的致密化、力学性能、热物理性能、微观形貌进行了分析和研究。因为先驱体与石英纤维浸润性好,陶瓷产率高,所以先驱体浸渍裂解法制备3D SiO2f/氮化物复合材料致密化较快。当浸渍一裂解4次后,材料的密度增加到1.71g/cm^3,其室温-200℃的热导率小于1.2W/m.K,而其弯曲强度、弹性模量分别为130.2MPa,22.6GPa,此时断口有明显的纤维拔出现象,呈非脆性断裂。  相似文献   

7.
采用环氧化物法和无机分散溶胶凝胶法,通过改变甲苯/乙醇混合溶剂比例制备了氧化铬基气凝胶和干凝胶。当甲苯/乙醇体积比由1:3增大至3:1时,环氧化物添加法制备的氧化铬基气凝胶的平均孔径从14nm变为21nm,比表面积从66m2/g升为244m2/g,总孔体积容量由0.2339cm3/g增至1.296cm3/g。无机分散溶胶凝胶法制备的气凝胶(添加聚丙烯酸PolyAcrylicAcid,PAA),比表面积则由276m2/g降至66m2/g,总孔体积容量从0.9601cm3/g降至0.2339cm3/g。结果表明,采用混合溶剂和和添加PAA的方法可能实现对气凝胶微结构的连续调控。  相似文献   

8.
文摘辑要     
《表面工程资讯》2002,(2):14-16,13
无机氧化物的制备及其特性 用溶胶-凝胶法(sol-gel method)在不锈钢表面制备了SiO_2-TiO_2-ZrO_2系无机氧化膜(STZ)。用DTA/TG、IR、XRD和SEM等手段研究了涂层制备时由凝胶向玻璃态的转变以及涂层薄膜的显微结构特点,考察了涂层对基体的保护效果。试验结果表明,在溶胶至凝胶最终转变为无机氧化物的过程中形成了  相似文献   

9.
纤维增强气凝胶柔性隔热复合材料的制备   总被引:3,自引:0,他引:3  
以正硅酸乙酯(TEOS)为原料,酸碱催化两步法配制溶胶,浸渍柔性纤维毡后进行超临界干燥制备柔性隔热复合材料.研究表明,随着超临界干燥溶胶之前老化时间的延长(1 h~7 d),复合材料在600℃下的抗拉强度变大(0.13~0.21MPa),红外光谱分析确定是由于其水解程度变大.复合材料中的纯气凝胶比表面积为209.8 m2/g,平均孔径为18.8 nm.场发射扫描电镜照片表明气凝胶很好地填充于纤维之间,避免了纤维与纤维的接触.从而柔性复合材料具有低热导率,120、500℃下分别为0.019、0.054 W/m·K.  相似文献   

10.
采用溶胶-凝胶法,以正硅酸乙酯(TEOS)为无机相前驱体,甲基三乙氧基硅烷(MTES)和二苯基二甲氧基硅烷(DDS)为有机相前驱体,盐酸和水为催化剂,通过水解-缩聚反应制备了不同SiO_2含量有机硅/SiO_2有机-无机杂化溶胶.经100℃烘干12 h得到有机硅/SiO_2杂化涂层.红外光谱研究表明不同TEOS含量制备的杂化材料有机、无机两相组成了强相互作用的杂化体系.采用热重分析(TGA)和耐热性试验研究不同TEOS含量有机硅/SiO_2有机-无机杂化涂层的耐热性能;采用电化学阻抗(EIS)、浸泡试验和盐雾试验研究其耐蚀性能,结果表明与未加TEOS的有机硅涂层相比,加入适量TEOS使得杂化涂层的热分解温度提高67℃,并且其耐蚀性能也得到明显提高.  相似文献   

11.
采用溶胶-凝胶法制备二氧化硅/PMMA涂层,研究复合涂层对玻璃强度的影响。以正硅酸乙酯和甲基丙烯酸甲酯、γ甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)为原料,制备出SiO_2/PMMA复合溶胶。将有机-无机复合溶胶采用提拉法涂覆在玻璃片上,经120℃热处理2 h制备了复合涂层。采用傅里叶红外光谱仪、原子力显微镜和扫描电镜表征了涂层的结构和形貌,同时采用双环强度测试仪和分光光度计对涂层前后玻璃的性能进行了测试。结果表明溶胶-凝胶法制备的二氧化硅/PMMA复合涂层中,PMMA含量在40%~70%之间时,二氧化硅粒子和PMMA形成了均匀的网络结构,两相相容性良好,形成了纳米级厚度的复合膜:玻璃的断裂强度提高了64.11%~97.85%:涂层后玻璃的透光率均在93%以上,高于末涂层玻璃。  相似文献   

12.
以硅酸钠为硅源,稀H_2SO_4为催化剂,采用溶胶-凝胶法常压干燥制备了SiO_2气凝胶,并以聚丙烯酸酯为粘合剂将其涂附在织物上得到保温功能织物。结果表明,当H_2SO_4浓度为1.5 mol/L、Na_2SiO_3/乙醇的质量比为1:6和反应温度为50℃时,所制备气凝胶的孔径、堆积密度和导热系数分别为25 nm、0.046 g/cm3和0.0198 W/m·K;当织物涂层中SiO_2、粘合剂及助剂含量分别为12%、15%和3%时(质量分数),涂层织物和未涂层织物经红外灯照射40 min后,内侧温差可达9.1℃,具有保温性能。  相似文献   

13.
高分子纤维增韧SiO_2气凝胶复合材料的制备   总被引:1,自引:0,他引:1  
以正硅酸乙酯为硅源,乙醇和水为溶剂,芳纶纤维为增强相,通过溶胶凝胶及常压干燥等步骤,实现了芳纶增韧SiO_2气凝胶复合材料的非超临界制备.采用扫描电镜、吸附-脱附等分析手段及热导率测试对所得气凝胶样品进行结构分析和性质表征.结果表明,调节反应体系的各反应参数可以获得具有不同外形、密度及热导率的复合材料;所得气凝胶平均孔径约为10~20 nm,比表面积可达1000 m~2/g,可望在隔热材料等领域得到应用.  相似文献   

14.
以三维碳纤维编织物和硅树脂(SR249)为原料,采用先驱体转化法(PIP)制备了3D-Cf/Si-O-C材料,考察了首周期先驱体溶液浓度对其力学性能的影响.结果表明:首周期浸渍先驱体溶液的浓度不同会导致3D-Cf-Si-O-C复合材料中气孔大小及分布的不同而对力学性能产生较大影响,随首周期先驱体溶液浓度的增大,3D-Cf/Si-O-C复合材料力学性能先降低后提高.首周期采用SR249/xylene体积比为0.5:1先驱体溶液制备的3D-Cf/Si-O-C复合材料力学性能和气孔率都处于极小值,其弯曲强度为247 MPa,断裂韧性为9.6 MPa·ml/2,气孔率为10.8%.  相似文献   

15.
选用M40J碳纤维、KD-Ⅱ型碳化硅纤维和Nextel610型氧化铝纤维为增强体材料,采用真空压力浸渗法制备纤维单向排布,基体合金为ZL301的连续纤维增强铝基复合材料,研究增强纤维对复合材料致密度、界面及力学性能的影响。结果表明:增强纤维对复合材料的致密度有着明显影响,C_f/Al复合材料的致密度最大,达到99.9%,密度最小,仅为2.248g/cm~3,且其纤维排布均匀,组织缺陷最少;不同增强纤维与基体会发生不同程度的界面反应,最后表现为不同的纤维损伤程度,界面层厚度和界面相的大小,Al_2O_3f/Al复合材料未发现明显界面层,SiC_f/Al复合材料和C_f/Al复合材料的界面层厚度分别为275.3 nm和327.4 nm,界面上都发现有短棒状的Al_4C_3相;SiC_f/Al,C_f/Al和Al_2O_3f/Al复合材料的拉伸强度分别为780.3 MPa,670.2 MPa和587 MPa,组织缺陷、纤维损伤和界面结合强度是影响复合材料强度的主要因素。  相似文献   

16.
利用棱镜耦合装置测量了溶胶-凝胶法制备的2种有机/无机复合材料的热光系数(dn/dT),并研究无机网络结构与复合材料热光系数的变化关系,还讨论了湿度对材料折射率和热光系数的影响.PMMA-SiO2复合材料中,水分的吸收使得材料的折射率增大,热光系数减小;|dn/dT]先是随TEOS的含量增多先略减小然后再逐渐增大,而以MAPTMS,ZPO和MAA等为原料,采用UV光引发有机部分聚合制备的复合材料,其|dn/dT]随着无机网格的增多而减小.这种差异表明复合材料的热光性质除了决定于材料的组成外,还同其微观结构有密切的关系.  相似文献   

17.
通过溶胶凝胶法确定制高钙离子交换量NaA沸石的最佳工艺参数。为了避免原料的不稳定,通过溶胶凝胶法制备超纯的A1_2O_3-2SiO_2粉体作为制备NaA沸石的主要原料。相对结晶度和钙交换量作为确定最佳工艺参数的标准。研究了钠硅摩尔比,水钠摩尔比,结晶温度和结晶时间对相对结晶度和钙变换量的影响。产物用XRD、SEM和BET技术进行表征。最后确定制备NaA沸石的最化工艺参数为:n(Na_2O)/n(SiO_2)=3.0、n(H_2O)/n(Na_2O)=20,结晶温度90℃,结晶时间2 h。合成的NaA沸石平均颗粒尺寸为1.5μm,高钙交换量最高达到365.6 mg CaCO_3·g~(-1)。  相似文献   

18.
以三维碳纤维织物和廉价的硅树脂为原料,采用先驱体转化工艺制备3D C_f/Si-O-C材料,考察了硅树脂浓度对材料微观结构与力学性能的影响.结果表明:随着硅树脂浓度的增加,3D C_f/Si-O-C材料的密度增加,孔隙率下降,材料的弯曲强度增加,当硅树脂浓度达到54.5%时,材料的弯曲强度达到360.6 MPa;而随着硅树脂浓度的进一步增加,材料的密度虽然进一步增加,但弯曲强度和断裂韧性却明显下降,这主要是由于硅树脂浓度过高时,所制备的材料基体与纤维结合较紧,界面结合较差的原因造成的.  相似文献   

19.
DDS含量对有机硅/SiO_2杂化涂层性能的影响   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法,以正硅酸乙酯(TEOS)为无机相前驱体,甲基三乙氧基硅烷(MTES)和二苯基二甲氧基硅烷(DDS)为有机相前驱体,盐酸和水为催化剂,通过水解-缩聚反应制备了不同DDS含量的有机硅/SiO_2有机-无机杂化溶胶。在100℃下经12 h烘干得到有机硅/SiO_2杂化涂层。涂层性能测试表明:随DDS含量增加,硬度、附着力、耐蚀性(未加DDS耐蚀性较差)有所下降;柔韧性均为1级。低温下涂层耐热性较好。溶胶中n(TEOS):n(MTES):n(DDS)为6:9:2时涂层综合性能最佳。  相似文献   

20.
用溶胶-凝胶法在Pt/Ti/ SiO_2/ Si基片上制备了SrBi_3.88 Nd_0.12 Ti_4O_(15)铁电薄膜材料,研究了退火温度和匀胶速率对铁电薄膜材料结构、铁电性能的影响.退火温度为750 ℃、匀胶速率为3000 r/min薄膜样品为纯的铋层状钙钛矿结构且没有其它杂相出现,a轴取向的晶粒较多,铁电性能较好,剩余极化强度和矫顽场分别为2P_r=26.7 μC/cm~2、2E_c=80 kV/cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号