共查询到10条相似文献,搜索用时 0 毫秒
1.
针对变压器状态数据累积规模和复杂程度均增大的情况,单一智能算法进行数据处理的能力有限、精度低,提出了基于自适应极限学习机的变压器故障识别方法。利用免疫算法(IA)的多样性调节机制和存储机制对粒子种群进行优、劣分类,对优、劣粒子分别采用不同的进化方式。经IA改进的粒子群优化(PSO)算法有效克服了种群容易早熟从而导致进化停滞的缺点,提高了全局寻优能力。在参数寻优的基础上,根据寻优输出结果建立变压器故障识别模型。实验计算结果表明所提方法比极限学习机(ELM)、粒子群优化极限学习机(PSO-ELM)、遗传算法优化极限学习机(GA-ELM)方法的故障识别精度高。 相似文献
2.
《高压电器》2017,53(10):124-130
为有效克服变压器不完备故障样本数据对故障诊断结果的影响,文中构建了一种基于粗糙集的人工鱼群极限学习机变压器故障诊断方法,该方法首先运用粗糙集对决策表中的16个条件属性进行约简;其次,根据最简规则表对训练样本进行编码,利用已编码的训练样本对极限学习机进行训练,并运用人工鱼群优化方法对极限学习机的权值及阈值进行优化;最后,利用训练好的极限学习机方法对编码好的样本进行故障诊断。该方法将粗糙集在不完整数据方面所具有的优良特性与极限学习机优良的泛化能力有机融合,以有效提高故障诊断精度。经实例对比分析表明,所构建方法具有更高的诊断准确率,从而验证了该方法的有效性。 相似文献
3.
4.
5.
针对基于极限学习机的变压器故障诊断模型隐含层神经元个数较多时,存在过拟合、稳定性差以及精确度不高的问题,提出了一种最优正则极限学习机的变压器故障诊断方法。方法收集了变压器油中溶解气体作为故障指标,将采集的数据集合随机分成训练集、验证集和测试集。首先通过训练集对极限学习机故障诊断模型进行训练;其次,将验证集输入已构建的模型,利用验证集精度与训练精度的差值进行反馈,并引入最优正则系数对模型参数进行惩罚性调整;最后,利用更新后模型对测试集进行故障诊断。通过算例分析与比较可以得出,最优正则系数极限学习机比极限学习机稳定性强,精确度高,并且方法简单,计算速度快,可有效实现变压器故障诊断。 相似文献
6.
基于粒子群优化神经网络的变压器故障诊断 总被引:6,自引:2,他引:6
为克服电气分析应用中误差反向传播(BP)神经网络存在的不足,提出了一种利用改进粒子群算法优化神经网络的变压器故障诊断新方法。该法的惯性权重自适应调整,以平衡局部和全局搜索能力;收缩因子加快算法的收敛速度,有利于更快地收敛于全局最优解。利用改进的粒子群算法优化神经网络参数,并结合BP算法训练网络可有效地克服常规BP算法训练网络权值和阈值收敛速度慢、易陷入局部极小和遗传算法独立训练神经网络速度缓慢等缺点。最后,进行变压器故障实例分析的仿真结果表明,该算法具有较快的收敛速度和较高的诊断准确度,证实了该方法的正确性和有效性。 相似文献
7.
8.
基于混沌优化粒子群BP神经网络的电力变压器故障诊断 总被引:1,自引:0,他引:1
针对电力变压器故障诊断问题,提出了一种基于混沌(Chaos)优化的粒子群(Particle Swarm Optimization)BP神经网络算法。该算法将混沌、粒子群和BP神经网络相结合,通过混沌粒子群算法寻优,得到BP神经网络的最优权值和阈值初始值,然后进行网络训练和测试。利用了混沌算法的遍历性和对初始值敏感的特点,对粒子群算法进行了参数优化,引入了早熟判断机制,并在早熟状态时进行了混沌扰动,使算法后期不易陷入局部最优。通过实例训练与测试表明,CPSO-BP神经网络算法在变压器故障诊断方面有较好的效果。 相似文献
9.
10.
综合RapidMiner与改进粒子群极限学习机算法的变压器故障诊断 总被引:2,自引:0,他引:2
针对三比值法用于变压器故障诊断缺编码以及各种人工智能方法抗干扰能力不足等问题,提出了综合RapidMiner与改进粒子群极限学习机算法RM-MPSO-ELM的变压器故障诊断方法。该方法利用RapidMiner工具,结合变压器样本数据,挑选出与故障类型最相关的输入变量,并针对极限学习机算法参数选择困难的问题,利用改进粒子群优化算法进行了参数优化。最后,使用极限学习机算法对变压器的潜在故障进行识别,并将之与IEC三比值法、支持向量机方法以及不同组合的极限学习机算法的诊断性能进行了比较。结果表明,本文所提方法具有更高的诊断精度。 相似文献