共查询到16条相似文献,搜索用时 93 毫秒
1.
针对变压器状态数据累积规模和复杂程度均增大的情况,单一智能算法进行数据处理的能力有限、精度低,提出了基于自适应极限学习机的变压器故障识别方法。利用免疫算法(IA)的多样性调节机制和存储机制对粒子种群进行优、劣分类,对优、劣粒子分别采用不同的进化方式。经IA改进的粒子群优化(PSO)算法有效克服了种群容易早熟从而导致进化停滞的缺点,提高了全局寻优能力。在参数寻优的基础上,根据寻优输出结果建立变压器故障识别模型。实验计算结果表明所提方法比极限学习机(ELM)、粒子群优化极限学习机(PSO-ELM)、遗传算法优化极限学习机(GA-ELM)方法的故障识别精度高。 相似文献
2.
《高压电器》2017,(10):124-130
为有效克服变压器不完备故障样本数据对故障诊断结果的影响,文中构建了一种基于粗糙集的人工鱼群极限学习机变压器故障诊断方法,该方法首先运用粗糙集对决策表中的16个条件属性进行约简;其次,根据最简规则表对训练样本进行编码,利用已编码的训练样本对极限学习机进行训练,并运用人工鱼群优化方法对极限学习机的权值及阈值进行优化;最后,利用训练好的极限学习机方法对编码好的样本进行故障诊断。该方法将粗糙集在不完整数据方面所具有的优良特性与极限学习机优良的泛化能力有机融合,以有效提高故障诊断精度。经实例对比分析表明,所构建方法具有更高的诊断准确率,从而验证了该方法的有效性。 相似文献
3.
4.
5.
基于粒子群优化神经网络的变压器故障诊断 总被引:6,自引:2,他引:6
为克服电气分析应用中误差反向传播(BP)神经网络存在的不足,提出了一种利用改进粒子群算法优化神经网络的变压器故障诊断新方法。该法的惯性权重自适应调整,以平衡局部和全局搜索能力;收缩因子加快算法的收敛速度,有利于更快地收敛于全局最优解。利用改进的粒子群算法优化神经网络参数,并结合BP算法训练网络可有效地克服常规BP算法训练网络权值和阈值收敛速度慢、易陷入局部极小和遗传算法独立训练神经网络速度缓慢等缺点。最后,进行变压器故障实例分析的仿真结果表明,该算法具有较快的收敛速度和较高的诊断准确度,证实了该方法的正确性和有效性。 相似文献
6.
7.
针对电力变压器故障诊断问题,提出了一种基于混沌(Chaos)优化的粒子群(Particle Swarm Optimization)BP神经网络算法。该算法将混沌、粒子群和BP神经网络相结合,通过混沌粒子群算法寻优,得到BP神经网络的最优权值和阈值初始值,然后进行网络训练和测试。利用了混沌算法的遍历性和对初始值敏感的特点,对粒子群算法进行了参数优化,引入了早熟判断机制,并在早熟状态时进行了混沌扰动,使算法后期不易陷入局部最优。通过实例训练与测试表明,CPSO-BP神经网络算法在变压器故障诊断方面有较好的效果。 相似文献
8.
综合RapidMiner与改进粒子群极限学习机算法的变压器故障诊断 总被引:2,自引:0,他引:2
针对三比值法用于变压器故障诊断缺编码以及各种人工智能方法抗干扰能力不足等问题,提出了综合RapidMiner与改进粒子群极限学习机算法RM-MPSO-ELM的变压器故障诊断方法。该方法利用RapidMiner工具,结合变压器样本数据,挑选出与故障类型最相关的输入变量,并针对极限学习机算法参数选择困难的问题,利用改进粒子群优化算法进行了参数优化。最后,使用极限学习机算法对变压器的潜在故障进行识别,并将之与IEC三比值法、支持向量机方法以及不同组合的极限学习机算法的诊断性能进行了比较。结果表明,本文所提方法具有更高的诊断精度。 相似文献
9.
基于遗传算法改进极限学习机的变压器故障诊断 总被引:1,自引:0,他引:1
《高压电器》2015,(8):49-53
针对变压器故障的特征,结合变压器油中气体分析法以及三比值法,提出了基于遗传算法改进极限学习机的故障诊断方法。由于输入层与隐含层的权值和阈值是随机产生,传统的极限学习机可能会使隐含层节点过多,训练过程中容易产生过拟合现象。该方法运用遗传算法对极限学习机的输入层与隐含层的权值与阈值进行优化,从而提高模型的稳定性和预测精度。将诊断结果与传统的基于极限学习机故障诊断进行对比,结果表明,基于遗传算法改进极限学习机变压器故障诊断的精度更高。 相似文献
10.
11.
针对变压器故障诊断中模型训练时间长,容易过拟合,噪声敏感等问题,本文提出一种深度降噪极限学习机变压器故障诊断方法。将极限学习机与降噪自编码器结合构建降噪自编码极限学习机,并将其堆叠构建深度降噪极限学习机模型进行特征提取,将提取的特征输入常规极限学习机进行分类,整体构成深度降噪极限学习机分类算法。该算法能有效应对电压器油中溶解气体分析数据中的噪声且具有非常快的学习速度。仿真实验结果表明,相比于传统BP神经网络,本文方法有更高的故障诊断正确率和更短的训练时间,是一种有效的变压器故障诊断方法。 相似文献
12.
13.
基于粒子群优化支持向量机的变压器故障诊断 总被引:3,自引:4,他引:3
为了克服了人工神经网络(ANN)中存在的过拟合、收敛速度慢、容易陷入局部极值等缺点,提出了基于粒子群优化支持向量机(PSO-SVM)的变压器故障诊断方法,即将粒子群优化算法(PSO)用于SVM参数优化。PSO是一种智能群体搜索方法,它源于对鸟类捕食行为的研究。这种方法不仅具有很强的全局搜索能力,而且容易实现,适合于SVM参数优化。变压器故障诊断实例分析结果证明,PSO-SVM的诊断精度高于IEC三比值法、BP神经网络、普通的SVM,PSO-SVM适用于电力变压器故障诊断。 相似文献
14.
15.
16.
为进一步提高变压器故障诊断效果,提出了一种基于加权综合损失优化深度学习和油中溶解气体分析(dissolved gas-in-oil analysis,DGA)的变压器故障诊断方法。该方法以DGA特征量为输入,以Softmax层各故障状态概率分布为输出,基于堆栈稀疏自编码深度学习理论构建了变压器故障诊断模型。针对常规交叉熵损失函数下,变压器故障诊断效果偏低,训练样本不平衡分布影响故障诊断水平的问题,采用加权综合损失函数对深度学习模型进行优化。案例分析结果表明:相比传统方法,本文方法可削弱训练样本不对称对变压器故障诊断的不利影响并提高变压器故障诊断水平,各训练集下,本文方法故障诊断准确率可保持在90%以上。 相似文献