首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
催化裂化柴油芳烃特别是稠环芳烃含量高,用中压加氢改质工艺处理后,生产的柴油各项指标符合世界燃料规范Ⅱ类标准,且其它产品如重石脑油可作催化重整原料,尾油可作蒸汽裂解制乙烯原料。中压加氢改质工艺是增产清洁柴油的有效途径。  相似文献   

3.
中压加氢改质工艺对劣质柴油适应性研究   总被引:1,自引:0,他引:1  
对焦化柴油和催化裂化柴油进行中压加氢改质工艺的中型试验,将劣质柴油改质后可生产石脑油馏分、喷气燃料组分以及高十六烷值、低硫、低氮的低凝柴油,试验表明该工艺对劣质柴油有较好的适应性。将催化裂化柴油和焦化柴油按1:1比例混合后进行中压加氢改质可生产高十六烷值、低硫、低氮的-10号柴油。  相似文献   

4.
5.
中国石油锦州石化分公司柴油中压加氢改质装置原设计处理能力为800kt/a,进行了1.1Mt/a扩能改造。用RN-10催化剂取代了原用的RN-1催化剂。改造后的标定结果表明,装置液体收率高、气体产率低、氢耗低。RN-10/RT-5催化剂在高空速下,柴油产品硫、氮等杂质含量低,十六烷值得到了有效的提高,达到了劣质柴油加氢改质的目的,并且经济效益显著。  相似文献   

6.
在固定床中型加氢实验装置上,以石家庄炼化分公司催化裂化柴油为原料,在氢分压10.0 MPa、体积空速1.14 h-1、氢/油体积比1000、反应温度360℃的条件下,考察了加氢改质精制段各主要烃类的化学反应过程;在氢分压10.0 MPa、体积空速2.68 h-1、氢/油体积比1000、精制段反应温度360℃的条件下,考察了加氢改质的改质段不同反应温度下的化学反应过程。结果表明,精制段中,芳烃的加氢饱和反应对十六烷值的正向贡献约为18.46个单位,长侧链烃类断裂为短侧链烃类的反应对十六烷值的负向贡献约为1.06个单位,正负向的综合作用使得十六烷值提高17.40个单位;改质段中,芳烃加氢饱和反应和环状烃开环裂化反应对十六烷值的正向贡献为3.93~6.60个单位,长侧链烃类断裂为短侧链烃类的反应对十六烷值的负向贡献为0.33~1.19个单位,综合作用的结果使得改质产品柴油与精制油相比十六烷值提高3.60~5.50个单位。  相似文献   

7.
通过共胶法制备了一种非负载型加氢改质催化剂。采用X射线衍射、NH3-程序升温脱附、吡啶吸附红外光谱、扫描电子显微镜、N2吸附-脱附等手段对制备的催化剂进行表征。以中国石化青岛炼油化工有限责任公司(简称青岛炼化)和石大科技胜华炼油厂(简称胜华)两种劣质催化裂化(FCC)柴油为原料,考察催化剂的脱硫、脱氮、脱芳烃效果及其对高硫、高芳烃劣质柴油原料的适应性。结果表明,共胶法催化剂可在360℃下使青岛炼化FCC柴油硫质量分数由7 428μg/g降到14μg/g、胜华FCC柴油硫质量分数由5 114μg/g降到12μg/g,能够完全脱除两种劣质FCC柴油中的氮化物,且对FCC柴油的稠环芳烃脱除率达到99%以上。  相似文献   

8.
柴油加氢改质催化剂的评选   总被引:1,自引:0,他引:1  
刘爱华  许家明等 《炼油》2001,6(2):35-38
在小型加氢装置上对LH-03催化剂及国内工业装置上应用效果较好的A,B两种参比剂进行了评价与筛选,结果表明LH-03催化剂的加氢脱硫,脱氮活性优于A,B两种参比剂,LH-03催化剂是加氢装置扩能增效理想的催化剂。  相似文献   

9.
10.
MCI 柴油加氢改质技术的应用   总被引:1,自引:0,他引:1  
大港石化公司加氢装置应用MCI技术对催化裂化柴油进行加氢改质,实践证明,该技术能够有效地提高催化裂化柴油的十六烷值,并能降低产品的胶质。  相似文献   

11.
研究了NiMo型催化剂在柴油加氢反应过程中的动力学规律,综合考虑硫化氢、氮化物和芳烃的抑制作用,建立了三集总加氢脱硫反应动力学模型。通过对反应过程中放热和温升的估算,建立了柴油绝热加氢脱硫反应动力学模型。根据模型计算了等温和绝热环境中物流性质沿反应器轴向的变化规律。结果显示,二者的变化规律存在明显差异,达到相同脱硫深度时,绝热条件中硫化物和氮化物前期脱除速率慢于等温条件。另外,通过模型详细描述了绝热条件各集总硫化物、氮化物和芳烃含量沿反应器轴向的变化规律,获得了各集总在反应器不同位置硫化物、氮化物和芳烃含量的定量数据,结果显示,硫化物、氮化物和芳烃含量各集总的变化趋势均不相同。  相似文献   

12.
低、中、高压催化柴油加氢工艺探讨   总被引:3,自引:0,他引:3  
许雪茹 《齐鲁石油化工》2005,33(2):83-84,87
为适应清洁燃料的生产,对催化柴油低压加氢精制、中压加氢改质、高压加氢裂化进行了对比试验,考查了3种加氢工艺对催化柴油的硫含量、氮含量、十六烷值的影响。根据反应压力对产品质量的影响,建议不同性质的催化柴油可采用不同的加氢处理工艺,为炼厂节省费用支出提供了新思路。  相似文献   

13.
在大气模拟试验装置上进行了模拟高原环境下柴油机燃用0号柴油和添加无灰助燃剂燃油(1号柴油)的发动机台架试验,通过测试功率、燃油消耗率、碳烟等有害物质排放量来评价柴油添加剂节能减排功效。结果表明,柴油机在模拟海拔3 000 m气压(70 kPa)条件下,与燃用0号柴油相比,燃用1号柴油时发动机输出功率升高,燃油消耗率及CO、HC、碳烟排放量降低,NOx排放量略有增加。添加无灰助燃剂可有效提升柴油机的动力性、节省燃料和降低排放,改善发动机的高原适应性。  相似文献   

14.
研究了反应条件、催化剂和原料含水量对催化剂活性及稳定性的影响。试验证明,催化剂需要在合适的温度及时间进行预处理;催化剂活性及稳定性与反应温度及含水量有关。含水量越低,反应温度越高,催化剂的活性越高,但对目的产物的选择性不利。水对催化剂性能影响的机理可能是:水吸附在催化剂表面上,阻碍反应物进入孔内的反应活性位;影响了催化剂的酸性质  相似文献   

15.
采用小型固定流化床装置考察了二氢菲、八氢菲和全氢菲在分子筛催化剂上的裂化反应产物,并进行了对比分析。结果表明,在 REUSY 分子筛催化剂上,二氢菲主要发生脱氢缩合反应,生成菲、芘等三环以上多环芳烃甚至焦炭,并阻碍了作为溶剂的正庚烷的裂化;八氢菲、全氢菲主要发生环烷环开环反应,八氢菲的环烷环开环反应产物中乙烯、丙烯、丁烯等 C2~C4烃以及烷基苯的氢转移反应产物萘、烷基萘等 C10烃的收率较高,全氢菲的环烷环开环反应产物中环己烷、烷基苯等汽油组分烃的收率较高;另外,较少量的八氢菲、全氢菲通过脱氢缩合生成菲、芘等三环以上多环芳烃甚至焦炭。氢化菲氢化程度越高越容易发生环烷环开环反应,氢化程度越低越容易发生脱氢反应生成三环以上多环芳烃和焦炭,且氢化程度过低还会抑制饱和烃的裂化。  相似文献   

16.
以掺混不同体积分数(5%、10%)二乙二醇二甲醚(DGM)的柴油为燃料,采用F6L913柴油机进行发动机台架试验,通过控制进气压力模拟高原地区柴油机的工作条件,考察了海拔2000~4000 m下不同掺混比例的含氧燃料对发动机性能的影响。结果表明,在海拔2000 m以上地区,发动机燃用含氧燃料的功率均大于燃用纯柴油,且功率会随燃料中DGM添加量的增加而增大;海拔越高,转速越大,燃用含氧燃料时发动机动力性越好。在海拔2000 m以上地区,发动机燃用含氧燃料的燃油消耗率比燃用纯柴油低,且会随着海拔的升高和DGM添加量的增加而明显降低;含氧燃料可以显著降低柴油机高原地区碳烟、HC、CO的排放,NOx排放有所增加。在高原地区使用高含氧燃料是恢复柴油机性能的有效方法。  相似文献   

17.
双环芳烃定向转化为单环芳烃能有效提升催化裂化轻循环油(LCO)品质并缓解柴油产能过剩的问题。以1-甲基萘(1-MN)为模型化合物,通过热力学理论计算和实验对其加氢饱和反应热力学平衡特性及反应路径进行研究。热力学理论计算表明:四氢萘的加氢饱和反应自由能比1-甲基萘的加氢饱和反应自由能对于反应温度更为敏感;反应体系中1-甲基四氢萘(1-MTL)和5-甲基四氢萘(5-MTL)摩尔分数随反应温度、反应总压或氢/烃摩尔比的单独变化均存在最高值,当反应温度为650 K、反应压力为4.0 MPa及氢/烃摩尔比为5时,平衡体系中四氢萘类(MTLs)摩尔分数高达到47.2%。采用Ni-Mo/γ-Al2O3催化剂的加氢饱和反应实验结果与热力学理论计算的结果相一致,提高反应温度(高于623 K)能够抑制MTLs加氢饱和生成1-甲基十氢萘(1-MD);提高H2分压(高于4.0 MPa)虽能提高1-MN的转化率却使MTLs选择性降低,因此1-MN加氢饱和生成MTLs适宜的H2分压为4.0 MPa。  相似文献   

18.
 研究了不同碳链长度的几种正构醇作为助表面活性剂对油酸单乙醇胺盐-柴油-水体系形成的微乳液的影响。通过稀释法测定并计算了不同碳链长度的醇由连续相转移到界面层的自由能变化 。结果表明,在研究范围内只有碳原子数大于3的中长链醇才能与柴油体系形成稳定的微乳液。随着醇碳链增长,醇-油酸单乙醇胺盐-水-柴油微乳液体系拟三元相图中的微乳液区面积及体系的最大增溶水量均呈现增加的趋势。碳原子数为4~8的5种正构醇与柴油体系形成微乳液时的 都是负值,并随着碳数增加, 值减小。 与醇碳原子数n具有很好的线性关系: =0.1635n +6.2505。确定了制备柴油微乳液的最佳醇的碳链长度为7或8,亲水亲油平衡值(HLB)约为8.5。  相似文献   

19.
分别采用气相色谱-脉冲火焰光度检测器(GC-PFPD)及气相色谱-氮化学发光检测器(GC-NCD)对催化裂化柴油中的硫化物和氮化物类型进行了分析,考察了加氢预处理的反应温度对FCC柴油中的硫化物、氮化物的转化规律的影响。结果表明:FCC柴油中的硫化物主要为BTs和DBTs,氮化物主要以非碱性的含氮化合物为主,吲哚类和咔唑类约占总氮含量的98%;加氢预处理后的FCC柴油中的硫化物以BTs为主,4- MDBT 和4, 6- DMDBT含量很少;随着加氢预处理温度的提高,FCC柴油氮化物中的咔唑类逐渐减少,主要以吲哚类为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号