首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《应用化工》2022,(10):2107-2110
以大型海藻铜藻为原料,采用H_3PO_4活化法制备活性炭,考察磷酸与藻粉的浸渍比、浸渍时间、活化温度、活化时间对得率、亚甲基蓝吸附值、碘吸附值的影响。H_3PO_4活化法制备活性炭最佳工艺如下:磷酸与藻粉的质量比为5∶1,浸渍时间100 min,活化温度550℃,活化时间75 min。最佳制备条件下制得的活性炭碘吸附值为528. 8 mg/g,亚甲基蓝吸附值为142. 5 mg/g,得率为43. 74%,比表面积为728. 73 m2/g。pH=2条件下,铜藻基活性炭对于Cr(Ⅵ)最大吸附量和吸附率可分别到达31. 5 mg/g和85%。  相似文献   

2.
《应用化工》2019,(12):2947-2950
以牡丹花茶饮料生产末端茶渣(以下简称茶渣)作为活性炭制备原料,考察磷酸与茶渣的浸渍比、活化温度、活化时间对活性炭得率、碘吸附值的影响。结果表明,磷酸法制备茶渣活性炭的最佳工艺参数为:浸渍比(磷酸/原料)为1∶2.5,活化温度550℃,活化时间0.5 h。活性炭得率为29.91%,碘吸附值为968.75 mg/g。含水率为4.80%,灰分含量为17.25%。接近于国家一级活性炭对碘吸附值的要求标准1 000 mg/g。100 mL浓度为10 mg/L的苯酚废水,加入0.1 g活性炭,25℃振荡1 h,pH=5时,茶渣活性炭对于苯酚吸附量达到8.67 mg/g,吸附率约为87%。  相似文献   

3.
《应用化工》2022,(12):2947-2950
以牡丹花茶饮料生产末端茶渣(以下简称"茶渣")作为活性炭制备原料,考察磷酸与茶渣的浸渍比、活化温度、活化时间对活性炭得率、碘吸附值的影响。结果表明,磷酸法制备茶渣活性炭的最佳工艺参数为:浸渍比(磷酸/原料)为1∶2.5,活化温度550℃,活化时间0.5 h。活性炭得率为29.91%,碘吸附值为968.75 mg/g。含水率为4.80%,灰分含量为17.25%。接近于国家一级活性炭对碘吸附值的要求标准1 000 mg/g。100 mL浓度为10 mg/L的苯酚废水,加入0.1 g活性炭,25℃振荡1 h,pH=5时,茶渣活性炭对于苯酚吸附量达到8.67 mg/g,吸附率约为87%。  相似文献   

4.
通过磷酸改性处理活性炭,考察改性前后活性炭对亚甲基蓝吸附量的变化。关于活性炭对亚甲基蓝吸附行为的描述采用Langmuir和Freundlich吸附等温线模型。进一步研究了活性炭对亚甲基蓝的吸附动力学性质。试验改变因素包括吸附时间、吸附温度、亚甲基蓝溶液体积和活性炭投加量,探究这些因素对亚甲基蓝去除的影响。结果表明:质量分数为60%磷酸改性活性炭在吸附时间30 min、亚甲基蓝溶液体积40 mL、活性炭投加量0. 4 g、温度70℃时对亚甲基蓝的清除率最好。Langmuir等温模型能更好地拟合试验结果。活性炭吸附亚甲基蓝的动力学曲线更符合准二级动力学模型。研究表明磷酸改性的秸秆基活性炭对亚甲基蓝具有较好的吸附效果。  相似文献   

5.
以半纤维素的主要模型物木聚糖为原料,在不添加其他粘结剂的条件下,采用磷酸活化法制备半纤维素基颗粒活性炭。讨论了浸渍比和炭活化工艺对活性炭吸附性能和孔隙结构的影响。研究结果表明:浸渍比的增加,有利于颗粒活性炭的比表面积、亚甲基蓝吸附值、强度、总孔容积和中孔容积的提高。随着炭活化温度的升高,颗粒活性炭的碘吸附值、亚甲基蓝吸附值、比表面积、总孔容积和微孔容积呈下降的趋势,强度呈上升趋势。N2吸附-脱附等温线和孔径分析表明,颗粒活性炭具有发达的微孔结构,炭活化温度的升高不利于孔隙结构的发达。  相似文献   

6.
李素琼  王焕涵 《广州化工》2013,(19):41-45,73
采用机械力化学技术制备了良好吸附性能的活性炭,采用响应面法优化所制备活性炭的吸附性能。在单因素实验的基础上选取酸屑比、研磨时间、活化温度和磷酸浓度为影响因子,应用BBD(中心组合)进行4因素3水平的试验设计,以亚甲基蓝吸附值作为响应值,进行响应面分析。结果表明,机械力化学法制备磷酸活性炭的较优条件为:酸屑比为2.60,研磨时间为29 min,活化温度为390℃,磷酸浓度为22.5%,活性炭的亚甲基蓝吸附值达21.5 mg/g。  相似文献   

7.
以椰壳为原料,采用磷酸活化法制备椰壳基不定型颗粒活性炭,分析了反应条件对活性炭性能的影响。研究结果表明,随着浸渍比的升高,活性炭醋酸吸附量和醋酸锌吸附量呈不断上升的趋势,表观密度和强度呈下降趋势。活化温度和烘干温度的升高有利于活性炭醋酸锌吸附量、表观密度和强度的提高。在浸渍比1.25:1,活化温度400 ℃和烘干温度120 ℃,制得不定型颗粒活性炭的醋酸吸附量546 mg/g、醋酸锌吸附量61 g/L、表观密度0.395 g/mL和强度84.4%,符合国家标准GB/T 13803.5-1999的要求。  相似文献   

8.
研究了磷酸微波活化法在不同操作条件下制备秸秆基活性炭,探讨了最佳预处理温度、磷酸的浓度、微波功率和微波辐照时间对活性炭性能的影响。最佳工艺条件为:预处理温度为500℃,磷酸溶液的质量分数为25%,微波活化功率为450 W,微波辐照时间为5 min。对所制得的活性炭进行苯酚吸附、亚甲基蓝吸附和红外光谱及电镜等分析检测。实验最终产率达到35%以上,亚甲基蓝吸附值为150 mg/g以上。  相似文献   

9.
以核桃壳为原料,经炭化后,在超声波辅助下分别用浓HCl、NaOH、KOH、H_3PO_4、ZnCl_2活化制备出了一系列核桃壳基活性炭材料。研究了活化剂种类、活化浸渍时间、剂料比等因素对核桃壳基活性炭材料亚甲基蓝吸附值的影响。实验结果表明:在300℃炭化20min后,用氢氧化钾活化浸泡90min,剂料比为2∶1时,制备的核桃壳基活性炭材料对亚甲基蓝的吸附效果最好。  相似文献   

10.
以榆林某公司的兰炭为原料,KOH粉末为活化剂制备活性炭。通过改变活化过程中时间、温度、炭碱比等因素,从而探究活性炭的碘吸附能力。通过响应曲面优化处理活性炭制备过程中活化因素,从而确定最佳工艺。采用比表面积测定,红外光谱分析,扫描SEM电镜等对活性炭结构及性能表征进行分析结果表明,上述活化条件都会影响活性炭吸附能力和孔隙结构。当活化过程中的温度达到750℃,时间为0.5 h,炭碱比为1:3的时候,KOH的活化效果最佳,所制样品的碘吸附值最大且为1 162.91 mg/g,其BET比表面积可达655.15m2/g,Langmuir比表面积为908.22 m2/g。通过红外分析可知活性炭与预处理兰炭原料红外光谱图走势极其相似,只是活性炭出现了较强的芳基烷基醚C-O伸缩振动峰。通过扫描显微电镜分析可知与原料兰炭相比,活性炭样品组织表面非常粗糙并且有大量的孔隙出现,样品结构非常疏松。  相似文献   

11.
李镇镇  武家玉 《山西化工》2021,41(6):14-15,51
采用氯化锌活化法制备花生壳-污泥基活性炭,通过实验研究花生壳-污泥基活性炭的最佳制备条件.结果表明,在活化温度为600℃,活化时间为60 min,活化剂浓度为3 mol/L,浸渍比为1:2.5,花生壳添加比为30% 的条件下,制备得到的花生壳-污泥基活性炭吸附性能最佳.  相似文献   

12.
以成型、烘焙处理后的玉米秸秆为原料,磷酸作为活化剂制备了玉米秸秆基活性炭,并对活性炭样品进行表征。同时以碘吸附值、亚甲基蓝吸附值和焦糖脱色率为指标测定其吸附性能,并对制备条件进行优化。实验结果表明:玉米秸秆制备活性炭的最佳工艺条件为浸渍比即m(55%H3PO4)∶m(玉米秸秆)为4∶1、活化温度400℃、活化时间100 min,此条件下活性炭的得率为47.78%,制得的活性炭具有良好的吸附性能,碘吸附值、亚甲基蓝吸附值及焦糖脱色率分别达到864 mg/g、 210 mg/g和100%。活性炭比表面积可达1 105 m2/g,总孔容积为0.745 cm3/g,微孔孔容为0.287 cm3/g,中孔孔容为0.354 cm3/g,孔径分布集中于5 nm以内,约占73.56%,平均孔径为2.697 nm。FT-IR分析显示:在活化过程中磷酸与玉米秸秆发生交联作用,生成的活性炭损失了玉米秸秆的部分官能团。  相似文献   

13.
以石化企业干化剩余活性污泥为炭源前体、ZnCl2溶液为活化剂,在613℃条件下炭化70min制得了碘值为683.40mg/g、产率为55.5%的污泥基活性炭(SAC,sludge-based activated carbon)样品,并进一步利用不同浓度的HNO3、H2SO4和H2O2溶液为改性剂对SAC氧化改性,通过碘值测定、BET、Boehm滴定、ICP、FTIR、XRD、SEM、TEM等手段对改性前后SAC样品进行了表征分析和对比研究。结果表明,HNO3和H2SO4改性后SAC的BET比表面积、孔容、碘值均明显增加,可有效提高SAC吸附性能,当HNO3浓度为0.5mol/L、H2SO4浓度为1.0mol/L时改性效果最好,动态吸附甲苯的吸附量较改性前分别提高了38.80%和27.19%,吸附穿透时间也明显延长;而对于H2O2溶液为改性剂,总体上不利于SAC吸附性能的提高。对甲苯吸附效果最好的几种改性SAC材料进行再生性能测试,均展现了良好的再生循环利用性能。  相似文献   

14.
以城市污水厂污泥为原料,软锰矿为催化剂,氯化锌为活化剂,通过微波活化工艺制备污泥活性炭。研究了软锰矿添加量、微波功率、微波辐照时间和氯化锌浓度等对活性炭亚甲基蓝吸附值的影响,确定了适宜的制备污泥活性炭的工艺条件:软锰矿添加量为0.4%、微波活化处理功率500W、活化时间5min、氯化锌浓度40%,在此条件下所得污泥活性炭MSAC-1的亚甲基蓝吸附值最高可以达到92.2mg/g,利用该活性炭处理活性艳红X-3B染料废水,脱色率最高可达95%。  相似文献   

15.
郑利 《广东化工》2022,(13):56-58+72
以竹屑为原料,利用磷酸活化法制备了对氨氮废水有高吸附性能的活性炭。分别考察磷酸浓度、浸渍比、浸渍时间和炭化温度等制备条件对活性炭吸附性能的影响。结果表明,较优工艺为:磷酸浓度40%(质量百分率)、浸渍比1︰2.5、活化时间10h、炭化温度650℃。氨氮的吸附条件为温度25℃、pH≥8,吸附时间20 min,氨氮的吸附容量4.3 g/g活性炭。  相似文献   

16.
以牡丹花茶饮料生产末端残渣(以下简称"茶渣")为原料,以2 mol/L碳酸钾溶液为活化剂,制备茶渣活性炭。研究了剂料比、活化温度、活化时间对茶渣活性炭吸附性能的影响。结果表明,碳酸钾法制备残渣活性炭的最佳工艺参数为:碳酸钾/茶渣剂料比1∶1.5(质量比)、活化温度500℃、活化时间1 h,所得活性炭水分、灰分、得率、碘吸附值分别为4.67%,3.10%,9.89%,931.93 mg/g。接近于国家一级活性炭对碘吸附值的要求标准1 000 mg/g。pH=5时,茶渣活性炭对于苯酚最大吸附量和吸附率分别达到9.35 mg/g,吸附率94%。  相似文献   

17.
《应用化工》2022,(6):1413-1417
以牡丹花茶饮料生产末端残渣(以下简称茶渣)为原料,以2 mol/L碳酸钾溶液为活化剂,制备茶渣活性炭。研究了剂料比、活化温度、活化时间对茶渣活性炭吸附性能的影响。结果表明,碳酸钾法制备残渣活性炭的最佳工艺参数为:碳酸钾/茶渣剂料比1∶1.5(质量比)、活化温度500℃、活化时间1 h,所得活性炭水分、灰分、得率、碘吸附值分别为4.67%,3.10%,9.89%,931.93 mg/g。接近于国家一级活性炭对碘吸附值的要求标准1 000 mg/g。pH=5时,茶渣活性炭对于苯酚最大吸附量和吸附率分别达到9.35 mg/g,吸附率94%。  相似文献   

18.
本研究以玉米秸秆为原料,采用化学—微波活化法制备活性炭,通过甲基橙吸附实验考察所制备活性炭的吸附性能。运用正交法探讨了活化剂种类、活化剂质量浓度、微波功率、微波辐射时间等因素对玉米秸秆基活性炭样品吸附性能的影响。正交试验优化后的最优水平组合为:氯化锌为活化剂,质量浓度为40%,微波功率为640 W,活化4 min,在该制备条件下制得的活性炭样品对100 m L浓度为10 mg/L的甲基橙溶液的吸附率可达到98.64%。  相似文献   

19.
以晋城无烟煤为原料,与KOH活化剂混合均匀,利用正交实验,通过碘吸附值和亚甲基蓝吸附值对其活化功率、活化时间和碱度等工艺条件进行探讨,采用扫描电镜(SEM)和BET比表面等检测手段,对KOH最佳工艺条件下制备的活性炭进行了表征.实验结果表明:KOH微波活化制备晋城无烟煤基活性炭的最佳工艺条件为活化功率480 W,活化时间7.5min,碱度4∶1,此时制备的活性炭吸附效果最好,其碘吸附值为989.4mg/g,比表面积为1 057.2m2/g,其工艺条件对活性炭吸附的影响递减顺序为:活化功率、活化时间、碱度.  相似文献   

20.
采用物理化学活化法处理干熄兰炭进一步制备活性炭,探究了活化剂选择、碱炭比、活化温度、活化时间对活性炭吸附维生素B12溶液的影响,并且对最优条件下制备的活性炭进行SEM、BET、FIIR分析.研究表明,对比不同活化剂(ZnCl2、H3PO4、KOH)饱和溶液浸渍后得到的活性炭吸附维生素B12吸附量,KOH活化制备活性炭的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号