首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
在膨胀型聚氨酯材料中加入非膨胀型聚氨酯,可降低膨胀倍率,同时还使拉伸强度、拉断伸长率和撕裂强度等有所增强。该研究解决了聚氨酯遇水膨胀型密封条在过江隧道项目中因体积膨胀倍率过大而引起的密封条挤出或断裂的情况。  相似文献   

2.
以异佛尔酮二异氰酸酯(IPDI)、聚酯二元醇、二羟甲基丙酸(DMPA)、三羟甲基丙(烷TMP)等为原料,合成了遇水膨胀型聚氨酯。用FTIR对该聚氨酯进行了结构表征,并对其遇水体积膨胀率和力学性能进行了研究。结果表明:NCO/OH摩尔比(异氰酸酯指数)为1.3~1.4时试样遇水体积膨胀率较高;随着DMPA用量的增加,试样的遇水体积膨胀率增大,拉伸强度保持率降低;加入TMP后,聚氨酯形成化学交联,拉伸强度保持率得到改善但,是试样的体积膨胀率随着TMP用量的增加而降低。  相似文献   

3.
以不同大相对分子质量(Mn>1000)聚醚二元醇和聚醚三元醇进行复配制得复配聚醚多元醇,将复配聚醚多元醇与甲苯二异氰酸酯(TDI)合成制备聚氨酯预聚体,再加入填料、助剂等制得单组分聚氨酯密封胶,研究了不同大相对分子质量聚醚及复配比例对固化后的聚氨酯密封胶性能的影响。结果表明,聚醚二元醇的相对分子质量(Mn:2000~20000)越高,制得的聚氨酯密封胶断裂伸长率越高(351%~1462%),拉伸强度(5.43~1.35MPa)、硬度(75~29)、剥离强度(8.2~2.5k N/m)和剪切强度(3.81~0.81MPa)越低,聚醚三元醇的相对分子质量(Mn:3000~12000)越高,制得的聚氨酯密封胶断裂伸长率越高(473%~1597%),拉伸强度(7.37~1.32MPa)、硬度(76~34)、剥离强度(9.7~2.3k N/m)和剪切强度(4.67~0.73MPa)越低,复配的聚醚多元醇中聚醚三元醇比例越高,断裂伸长率越低(1428%~428%),拉伸强度(1.26~6.38MPa)、剥离强度(1.9~8.9k N/m)、剪切强度(0.79~4.95MPa)和硬度(35~7...  相似文献   

4.
交联剂用量对聚氨酯乳液膜性能的影响   总被引:4,自引:0,他引:4  
由聚醚、甲苯二异氰酸酯、二羟甲基丙酸及三羟甲基丙烷(TMP)等为原料制备交联型聚氨酯乳液。乳液胶膜的性能受交联剂TMP用量影响。交联剂用量越大,胶膜的玻璃化温度越高、断裂伸长率越小、在甲苯中溶胀性越小。当交联剂的摩尔分数约为3%时,拉伸强度最大,吸水率和浸水失重率最小。  相似文献   

5.
以聚乙二醇、聚四氢呋喃二醇、甲苯二异氰酸酯为原料,用预聚体法制备出遇水膨胀聚氨酯弹性体,研究了聚乙二醇用量和种类对聚氨酯的力学性能及其在不同矿化度水中的吸水膨胀性能的影响。实验结果表明:增加聚乙二醇用量有利于提高聚氨酯的吸水膨胀倍率,但易降低弹性体的力学性能;矿化度对聚乙二醇型聚氨酯的吸水膨胀倍率影响较吸水树脂复合型遇水膨胀橡胶要小得多。  相似文献   

6.
先用逐步聚合反应法以聚乙二醇(PEG)、甲苯二异氰酸酯(TDI)、甲基丙烯酸羟乙酯(HEMA)等为原料制备出吸水性聚氨酯大分子反应型树脂(PU)。该树脂与丁腈橡胶(NBR)混合,制备出PEG接枝NBR主链的新型耐盐型遇水膨胀橡胶(WSR)。论文研究了PU用量、聚丙烯酸钠(SAP)用量、过氧化二异丙苯(DCP)用量及循环浸泡次数对WSR力学性能和最大质量膨胀倍率(ΔWe)的影响。研究结果表明,随着吸水树脂中PU树脂相对含量的升高,WSR力学性能提高,ΔWe增大。当PU完全代替SAP时,DCP含量越高其力学性能及ΔWe越低,当DCP含量为2份时ΔWe保持在2.04倍以上,WSR的重复吸水膨胀倍率保持在98%以上。  相似文献   

7.
用甲基丙烯酸羟乙酯(HEMA)对吸水膨胀聚氨酯(PU)预聚体进行封端,制备出PU聚合物活性树脂。以丁腈橡胶(NBR)为基体,将聚丙烯酰胺(PAM)树脂和PU聚合物活性树脂共混,实现PU聚合物活性树脂与NBR大分子化学接枝交联,制备出新型高耐盐型遇水膨胀橡胶(WSR)。研究了超高矿化度下,PAM用量对材料力学性能和吸水膨胀倍率的影响。结果表明,PAM用量增加,WSR吸水膨胀倍率提高,但是力学性能降低;在20万超高矿化度下,浸泡400h后,WSR最大膨胀倍率稳定在2.7倍左右,表面无析出现象,表现出优异的耐盐性。  相似文献   

8.
以聚氯乙烯(PVC)、热塑性聚氨酯弹性体(PUR–T)为原料,通过溶液共混方法,用四氢呋喃(THF)溶解混合物,浇涛在聚四氟乙烯模具中制得PVC/PUR–T共混材料,采用高压CO_2为发泡剂用间歇发泡法制备PVC/PUR–T发泡共混材料。通过对解吸附时间的测定,确定了饱和时间为24 h。通过改变饱和压力得到一系列不同体积膨胀倍率和泡孔大小的材料,随着PUR–T含量的增加,体积膨胀倍率呈下降的趋势;PUR–T含量为5%时,混合材料的泡孔密度最大,随后又会降低,同时随着饱和压力的提高,试样的泡孔密度随之变大。在对发泡样品进行力学性能测试时,发现加入5%的PUR–T对断裂伸长率影响不大,但随着PUR–T含量的增加,断裂伸长率增加;随着PUR–T含量的增加,发泡共混物的拉伸强度也增加,说明PUR–T的加入增强了体系的强度和韧性。  相似文献   

9.
以三元乙丙橡胶为基胶,加入亲水性聚氨酯和高吸水树脂制备了遇水膨胀橡胶;改变亲水性聚氨酯、高吸水树脂、硫黄等组分,考察了硫化胶力学性能和吸水性能的变化。结果表明,随着亲水性聚氨酯用量的增大,硫化胶硬度减小,拉伸强度和撕裂强度下降,体积膨胀率上升,质量变化率增大,质量损失率减小;随着高吸水树脂用量的增大,硫化胶拉伸强度和撕裂强度均下降,硬度基本不变,质量变化率和体积变化率均上升,质量损失增大;增大硫黄用量可使硫化胶力学性能明显提高,吸水膨胀性降低,质量损失减小;在保持力学性能和吸水膨胀性能的前提下,改善加工工艺可减少质量损失率。  相似文献   

10.
陆佳华  邹敏  安昀 《塑料》2020,49(1):27-30
采用化学氧化法制备了不同膨胀体积的膨胀石墨(EG),通过聚丙烯酸酯对不同膨胀体积的EG进行包覆改性,利用改性后的EG制备改性EG/聚酰胺66(PA66)复合材料,研究了不同膨胀体积的改性EG对复合材料力学性能和导热性能的影响。结果表明,EG经丙烯酸酯改性后,EG的表面粗糙度和活性基团明显增加;复合材料弹性模量和弯曲强度均随改性EG膨胀体积的增加而增加,与未膨胀石墨相比,分别提升了36.1%、25.8%;拉伸强度、断裂伸长率和热导率随膨胀体积的增加呈先增加后减小的趋势。拉伸强度在EG膨胀体积为40 mL/g时达到最大值,为75.6 MPa;热导率在膨胀体积为20 mL/g时最佳,为2.56 W/(m·k),与未膨胀石墨相比,拉伸强度和热导率分别提升了33.3%和30.1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号