首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 79 毫秒
1.
通过求解两项近似Boltzmann方程,得到SF_6/N_2的放电参数,并将该参数引入流体模型。结合有限元法和通量校正传输法对SF_6/N_2的流注放电过程进行循环迭代求解,计算其击穿电压。以均匀电场中压强0.1~0.6MPa、间隙5mm为例进行数值模拟,通过气体放电实验对计算结果进行验证。根据计算及实验结果得到不同混合比、压强下SF_6/N_2的协同效应系数,分析采用上述计算方法研究混合气体协同效应的准确性。为更全面地反映混合气体应用条件,进一步开展压强低于0.1MPa的SF_6/N_2击穿特性实验研究。研究表明:随着电子崩不断向前发展,放电间隙的空间电子数密度快速增长,SF_6放电过程中的空间电子数密度增长速度低于SF_6/N_2。0.1MPa下20%SF_6/80%N_2放电5ns时的电子数密度峰值达到4.6×1014m~(-3),而SF_6中该值仅为3.7×1012m~(-3)。当气压为0.1~0.6MPa时,SF_6/N_2击穿电压计算值与实测值的最大误差为9.23%,协同效应系数计算值随压强、混合比的变化趋势与实验结果相符,误差均值为5%。0.02~0.08MPa下SF_6/N2击穿电压、协同效应系数随压强、混合比的变化趋势与0.1~0.6MPa下的基本相同。  相似文献   

2.
《高压电器》2013,(12):49-53
在E/N的范围为150500 Td(1 Td=10-17V·cm2)内,采用蒙特卡罗(Monte Carlo)方法及空碰撞技术模拟SF6/N2混合气体的脉冲汤逊放电。在SF6的百分含量k为0500 Td(1 Td=10-17V·cm2)内,采用蒙特卡罗(Monte Carlo)方法及空碰撞技术模拟SF6/N2混合气体的脉冲汤逊放电。在SF6的百分含量k为0100%范围内,求出了SF6/N2混合气体的有效电离系数(α-η)/N,漂移速度Ve,并由此导出临界击穿场强(E/N)lim在不同k时的值,计算结果与其他研究者报道的实验数据显示极好的一致性。为SF6/N2替代SF6作为绝缘用气体时高压电器设备的设计提供了参考依据。  相似文献   

3.
为了研究SF6/N2混合气体负直流电晕电流脉冲特性,建立SF6/N2混合气体二维轴对称针-板几何模型,对不同电场不均匀系数下的负直流电晕放电进行了仿真计算.通过将放电过程中正离子、负离子和电子的连续性方程与泊松方程耦合,研究负电晕电流脉冲的形成机制,分析了电场不均匀系数对带电粒子变化过程和电流脉冲特征参数的影响,并通过...  相似文献   

4.
近年来在气体绝缘金属封闭输电线路(GIL)中开始逐步使用低SF6混合比的SF6/N2混合气体作为绝缘介质,用以替代纯SF6气体。为了在电力设备中更好地应用SF6/N2混合气体,在极不均匀电场、正负两种极性雷电冲击(LI)下,通过实验分析研究了较低SF6混合比的SF6/N2混合气体的放电特性与协同现象,并在负极性雷电冲击下发现了反常的负协同效应。研究发现:负极性雷电冲击下,N2的击穿电压随气压的升高趋势显著高于SF6与SF6/N2混合气体,当气压超过0.3 MPa后,N2的击穿电压明显高于SF6/N2混合气体,甚至在0.5 MPa时超过了纯SF6的击穿电压,即出现了显著的负协同效应,且随着气压的升高,负协同效应明显增强;正极性下仍存在一定的协同效应,但协同效应随着气压降低而减弱,当气压低至0.2 MPa,亦出现了负协同效应。  相似文献   

5.
通过理论分析对SF_6/N_2混合气体的工频击穿特性进行了研究,得出SF_6/N_2混合气体中SF_6气体的最优比例是20%~30%,同时在其他条件不变的情况下将混合气体压力提高至1.4倍即可具备与纯SF_6气体相同的工频击穿电压。试验结果也验证了分析结论的正确性,表明SF_6/N_2混合气体代替纯SF_6气体作为绝缘介质是完全可行的。  相似文献   

6.
SF_6气体具有较高的温室效应,减少SF_6气体的使用量已达成共识。笔者从SF_6混合气体的角度,对短间隙SF_6/N_2混合气体完全击穿时的光谱特性开展研究。采用光谱仪测量压强0.1~0.4 MPa、电极间距2~12 mm时SF_6及SF_6/N2混合气体完全击穿时的电子温度、电子数密度等参数,从微观和宏观相结合的角度研究混合气体放电时形成等离子体通道的物理特性。研究结果表明:0.1~0.4 MPa下随着气体压强的升高SF_6气体完全击穿时的电子温度由6.06×10~4 K下降到2.67×10~4 K,电子密度由3.15×10~(17) m~(-3)增大到6.91×1017 m~(-3);0.1 MPa下随着SF_6混合比的升高混合气体完全击穿时的电子温度由N_2时的1.17×10~4 K上升到SF_6时的6.06×104 K,电子数密度由N_2时的5.94×1017 m~(-3)下降到SF_6时的3.15×10~(17) m~(-3)。  相似文献   

7.
使用SF_6/N_2混合气体代替纯SF_6气体作为GIS母线气室的绝缘介质,是一种大幅降低SF_6气体使用量的新型技术。文中对该混合气体的温度和压力特性开展了研究,利用道尔顿分压定律、贝蒂—布里奇曼方程、理想气体状态方程对SF_6/N_2混合气体状态方程进行了推导,开展了混合气体温度压力试验,对SF_6占体积比30%±2%的SF_6/N_2混合气体的试验测量数据和理论计算数据进行了对比分析,确定了该方程在工程应用上的有效性。根据研究绘制了混合气体温度压力特性曲线,为相关GIS设备以及气体监测仪表仪器的设计研发提供了依据。  相似文献   

8.
从工频击穿性能的角度探讨CF_3I/N_2混合气体替代SF6气体用于气体绝缘设备的可能性。通过工频击穿试验探究气压、混合比和电极间距三种因素对CF_3I/N_2混合气体工频击穿电压的影响,并与相同条件下的SF6/N2混合气体进行对比分析,提出使用协同效应指数C值判定混合气体协同效应类型及协同效应强弱的定量分析方法。结果表明,随着混合比、气压的升高,CF_3I/N_2混合气体工频击穿性能逐渐接近SF6气体,较高气压下的CF_3I/N_2混合气体更具有应用潜力。CF_3I/N_2混合气体工频击穿电压呈正协同效应,而且CF3I气体具有优良的自恢复绝缘性能。综合考虑工频击穿性能、液化温度和环境影响三种因素,在特定的场合下,CF3I含量为20%~50%的CF_3I/N_2混合气体有可能替代SF6气体用于气体绝缘设备。  相似文献   

9.
为了研究SF_6/N_2混合气体电介质击穿现象,利用编写的Matlab程序对放电通道发展过程进行数值模拟,并结合分形几何原理计算放电树枝的分形维数。基于分形理论,建立了考虑空间电荷分布和引入物理时间的棒-板分形放电仿真模型,通过有限元方法(FEM)计算空间电场,并首次结合通量校正传输(FCT)法求解带电粒子连续性方程,研究了不同发展概率指数、不同放电阈值和SF_6含量变化下分形放电特性。结果表明:概率指数越大,SF_6含量越高,则分形维数越小,放电树枝分叉也越少;体积含量50%/50%的SF_6/N_2混合气体放电分形维数D=1.219 2,整个放电过程流注发展平均速度为1.15Mm/s,并得到了不同时刻空间电荷及轴向电场与电子浓度的分布。  相似文献   

10.
《高压电器》2016,(12):54-59
文中通过对SF_6/CF_4混合气体在针板电极电场条件下,采用光谱测量法分析SF_6气体含量为20%~80%、压强为0.1~0.3 MPa及电极间距在4~10 mm下的气体击穿等离子体导电通道的发射光谱。利用多谱线斜率法及Stark展宽法计算SF_6/CF_4混合气体完全击穿的等离子体通道中电子温度、电子数密度等参数,建立等离子体导电通道的电子温度、电子数密度与气体压强、电极间距的关系。研究表明:当电极间距为4 mm时,随着混合气体压强的升高等离子体电子温度下降、电子数密度上升,ρSF_6为80%时等离子体通道的电子温度由0.1 MPa时的3.72×104 K下降到0.3 MPa时的1.99×104 K,电子数密度由2.61×1017 m-3增大到5.72×1017 m-3;0.1 MPa下电极间距在4 mm时等离子体通道中电子温度随SF_6气体含量的升高而上升,电子数密度呈下降趋势;电极间距在4~10 mm时,ρSF_6为20%时0.1 MPa下等离子体通道中电子温度及电子数密度基本不变,电子温度约为2.35×104 K,电子数密度约为3.22×1017 m-3。  相似文献   

11.
《高压电器》2016,(12):128-133
减少SF_6温室气体的使用,对绿色电网有重要意义。目前对SF_6替代气体的研究主要集中在常温环境下,对能够在极寒地区使用的替代气体研究还不多。CF_4具有明显的电负性,同时液化温度较低。文中在稍不均匀电场下、正负两种极性雷电冲击作用下,研究了CF_4及其N_2混合物绝缘特性。研究结果表明:CF_4/N_2混合气体击穿电压随混合比增加有明显的饱和效应,20%混合气体具有较低液化温度和GWP指数,同时绝缘强度良好,具备在极寒地区使用的潜力;通过对混合气体的协同效应分析发现:CF_4/N_2混合气体协同效应随气压升高而变得明显,CF_4/N_2负极性雷电冲击条件下协同效应比正极性雷电冲击条件下为显著,协同系数小于0.4。  相似文献   

12.
本文用半椭球凸出物模型计算了在SF_6/N_2和SF_6/CO_2中电极表面粗糙度对耐电强度的影响。计算表明:在电场畸变严重时,两种混合气体的击穿强度均高于纯SF_6,且SF_6/CO_2优于SF_6/N_2。这一结论并为实验结果所证实。  相似文献   

13.
《高压电器》2016,(12):60-65
为研究SF_6混合气体的放电参数特性,文中通过两项近似求解Boltzmann方程得到温度为300 K,不同混合比下SF_6/N_2、SF_6/CF_4的电子能量分布函数(EEDF)、折合电离系数α/N、折合吸附系数η/N和折合有效电离系数(α-η)/N,与其他文献结果对比,验证了该计算方法与放电参数的有效性。结果表明:SF_6/N_2、SF_6/CF_4两种混合气体都随折合场强E/N增大时,在较低电子能量区域的EEDF减小而在较高电子能量区域的EEDF增大,且SF_6/N_2混合气体在电子能量为3 e V附近存在EEDF的骤降现象,该现象与N_2的碰撞参数截面有关,而SF_6/CF_4混合气体不存在此现象;此外,SF_6/N_2、SF_6/CF_4两种混合气体随着折合场强E/N增大,折合电离系数α/N显著增大、折合吸附系数η/N减小,最终折合有效电离反应系数(α-η)/N也均随之增加。  相似文献   

14.
直流叠加冲击电压下极不均匀场中SF_6气体的击穿特性   总被引:1,自引:0,他引:1  
对直流叠加冲击电压的试验回路参数作了理论分析和实验检验。在15mm尖—板间隙中,测试了SF_6气体在复合波形下的击穿电压。  相似文献   

15.
为了环保,同时解决SF_6高压电器设备在低温下可靠运行的问题,研制和应用SF_6/N_2混合气体的电器设备是非常必要的。而同样压力下的SF_6所占比例越高,其密度越大,绝缘能力越强,但节能减排的意义就越小,因此需要研制SF_6/N_2混合气体密度继电器,用于监测其气体密度,从而既确保高压电器设备安全运行,又能达到较好的节能减排效果。文中提出研制高性能的SF_6/N_2混合气体密度继电器,并阐述了高性能的SF_6/N_2混合气体密度继电器的实现方法,以及通过性能测试,证实该SF_6/N_2混合气体密度继电器具有较好的性能。  相似文献   

16.
本文采用机加工形成的不同粗糙度的电极,研究SF_6,SF_6/N_2及SF_6/CO_2的绝缘特性,并与计算结果进行比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号