首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基于现有仿真平台,设计一款3 300V/50A逆导型绝缘栅双极晶体管器件(逆导型IGBT或RC-IGBT),元胞采用场截止型平面栅结构,元胞设计中采用载流子增强技术(EP),元胞注入采用自对准工艺,背面P型集电极采用透明集电极技术,降低IGBT工作模式下的饱和压降。采用二维数值仿真研究了器件结构及结构参数对器件性能的影响,通过结构参数拉偏,折衷优化IGBT与内集成二极管的性能参数,仿真得到的3 300V/50A逆导型IGBT器件饱和压降为3.4V,二极管导通压降为2.3V,阈值电压为5.6V,击穿电压为4 480V,与相同电压等级的分立IGBT器件和二极管性能相当。  相似文献   

2.
基于现有仿真及工艺平台,设计一款3 300V/50A场截止型绝缘栅双极晶体管器件(FS-IGBT),元胞采用场截止型平面栅结构,元胞注入采用自对准工艺,背面P型集电极采用透明集电极技术,降低导通状态的饱和压降。采用二维数值仿真主要研究了FS结构以及P~+集电极掺杂参数对器件性能的影响,通过参数拉偏仿真,重点分析了FS层和集电极P区注入剂量对器件参数的影响,确认了最佳的工艺窗口条件。通过合作方工艺平台对最终的结构进行了加工,最终测试结果显示IGBT器件通态压降为2.8V,击穿电压大于4 250V,关断损耗37mJ,开通损耗50mJ。  相似文献   

3.
为实现满足电网应用要求的短路能力强、反向偏置安全工作区大、工作结温高的3 300 V高压绝缘栅场效应晶体管模块,提出了一种具有N型增强层的IGBT元胞结构,采用P型隔离区的元胞布局结构和台阶形场板的保护环结构的IGBT设计。基于203.2 mm(8英寸)平面栅IGBT加工工艺,制作出的芯片封装成3 300 V/1 500 A的IGBT模块。模块常温下的饱和压降(V(CEsat)为2.55 V,动态总损耗(Etot)为5 236 mJ;高温150℃下的VCEsat为3.3 V,集电极和发射极间的漏电流(ICES)只有38 mA,Etot为7 157 mJ。在常温时,当栅极和发射极电压(VGE)为18.5 V的条件下,模块通过了一类短路测试。在150℃下,模块通过了2.5倍额定电流的反向偏置关断测试。  相似文献   

4.
针对柔性直流输电关键装备高压直流断路器的特殊需求,基于现有工艺平台开发了一款宽安全工作区的3 300V/50A压接式IGBT芯片。为降低2~4 ms过电流冲击过程中的芯片温升,纵向采用非穿通结构。同时,采用阶梯栅氧结构,引入第二雪崩区,降低动态闩锁发生的风险,提高器件的安全工作区。为适用于压接封装,开发了厚金属电极工艺,实现对压力的缓冲。将此结构流片验证,并进行模块级测试,芯片可在1 800V电压下达到6.5倍以上额定电流安全关断,短路电流可在20μs内安全关断,具有宽安全工作区水平。  相似文献   

5.
提出了高压绝缘栅双极晶体管(IGBT)的设计方法,根据国内现有工艺水平,设计了1 700 V/100 A高压大电流的NPT-IGBT,包括其元胞结构、终端结构、工艺流程及版图的设计。通过分析及仿真确定元胞的结构参数;采用场限环与场板相结合的终端结构,讨论场板的设置对终端结构的影响,提出了多晶硅场板设置的方案;流片完成后进行半桥模块的封装,并对模块进行了测试。击穿电压达1 700 V以上,栅发射极漏电流小于80 nA、关断时间小于800 ns、关断功耗小于30 mJ,均达到设计要求。导通饱和压降3.5 V(略高),可通过增大芯片尺寸的方法加以改进。  相似文献   

6.
基于现有工艺平台设计一款1 700V/100A非穿通型绝缘栅双极晶体管器件(Non punch through insulator gate bipolar transistor,简称NPT-IGBT),元胞采用平面型结构,元胞注入采用自对准工艺,背发射极采用透明集电极技术,对其静态特性进行工艺仿真。仿真结果显示,调整P阱注入剂量及P阱推结时间可以改变器件的阈值电压,调整P阱及背面P+集电极注入剂量可以改变器件的饱和电压。将此设计进行流片验证,结果显示击穿电压在2 100V以上,饱和压降在2.5~2.7V之间,阈值电压在3.9~5.9V之间,实测值和仿真值相差不大,在误差接受范围之内。  相似文献   

7.
为了在保留传统肖特基二极管正向压降低、电流密度大优点的基础上,使其反向击穿电压提高到了300 v以上,我们采用硅材料做为衬底,肖特基结区采用蜂房结构,终端采用两道场限环结构加一道切断环结构,所制备的肖特基二极管在正向电流10A时,正向压降仅为0.79 V;同时在施加300 V反向电压时,反向漏电流在5μA以下.  相似文献   

8.
为了满足4 500 V快恢复二极管(Fast recovery diode, FRD)反向偏置漏电低、反向恢复软度大的应用要求,介绍了一种新的FRD设计方法。该设计通过优化阳极掺杂,采用轻离子辐照和电子辐照相结合的寿命控制方式来增加FRD的反向恢复软度,降低FRD的元胞漏电流,并通过台阶形场板保护环结构来降低保护环的漏电流。采用203.2 mm(8英寸)平面栅加工工艺制作芯片并封装成4 500 V/3 000 A FRD模块,模块在高温125℃下的正向压降为3.1 V,反向偏置漏电流为10 mA,反向恢复能量为5 300 mJ,反向恢复软度为1.24,反向恢复电流下降速度为6 000 A/μs时,承受的极限功率可达8 MW。  相似文献   

9.
介绍了额定电压达4500V、额定电流达2000A的新型压接式封装IGBT(PPI)。在这种新器件的开发期间,特别强调系统制造商易于使用的可选用性。为了便于把压接式封装的IGBT紧固在长的骨架上,其机械设计是精心优化的。即使在骨架上的紧固会发生某些不均匀现象,这种压接式封装的IGBT由于其独特的设计,对每个芯片都用单独的压针压紧,因而它们都会发挥其完善的功能。进而,材料的选择也得到优化,以保证在野外也能达到极高的可靠性。在功率循环次数及在故障情况下运行之间的折中平衡点亦已被推向新的限界。这里的IGBT和二极管二者的芯片都是基于SPT(软穿通)技术。先进的IGBT平面元胞设计同二极管精密的寿命控制工程相结合,这样的芯片就具备了崭新的安全工作区。这就大大便利了系统设计,使原先使用的夹具或减振器成为过时。  相似文献   

10.
《微纳电子技术》2019,(2):95-100
阐述了6 500 V4H-SiC结势垒肖特基(JBS)二极管的设计、仿真和制备过程,并对流片结果进行了测试,分析了测试结果与仿真结果差异的原因。通过仿真对比分析了漂移区厚度、掺杂浓度、有源区p+区和场限环终端参数对器件电学特性的影响,数值模拟优化了器件元胞和终端结构的漂移区、有源区和场限环的结构参数。根据模拟结果,4H-SiC漂移区掺杂浓度为1.08×1015 cm-3、厚度为60μm,采用经过优化的70个场限环终端结构,通过完整的工艺流程,完成6 500 V4H-SiC JBS的制备。测试结果显示,室温下当6 500 V4H-SiC JBS正向导通电流密度达到3.53×105 A/m2时,正向压降为4 V,器件的反向击穿电压约为8 000 V。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号