首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soy protein isolate (SPI)-based microcapsules containing fish oil were prepared using a modified coacervation method followed by cross-linking treatments. The procedure yielded 95–98% microcapsules containing 0.5–0.6 g fish oil/g capsule with a volume mean diameter ranged from ~ 260 to ~ 280 μm. Four types of microcapsules produced were SPI with sucrose (MC-C/S), SPI with ribose (MC-C/R), SPI with sucrose and microbial transglutaminase (MC-MTG/S) and SPI with ribose and MTGase (MC-MTG/R). Protein cross-linking due to ε-(γ-glutamyl)lysine bonds and “Maillard cross-linking” were evidenced in the SDS-PAGE profiles of MC-C/R, MC-MTG/S and MC-MTG/R. Even though the microcapsules prepared with cross-linking treatments had significantly (P < 0.05) lower protein solubility as compared to that of the control, the results of fish oil release in pepsin solution at 37 °C indicated that the core release of all microcapsules prepared with ribose (MC-C/R and MC-MTG/R) was significantly (P < 0.05) lower than other microcapsules. During storage, microcapsules prepared with ribose had longer shelf life as compared to other microcapsules. This may be due to the release of antioxidative Maillard reaction products during heating and storage and a slower rate of gas permeability through the capsules.

Industrial relevance

The use of protein-based wall materials in the food industry for sensitive ingredients is limited because proteins are generally unstable with heating and damaged by organic solvents and the cross-linking agent is usually harmful. Therefore a novel method of combining two familiar cross-linking agents such as the microbial transglutaminase and ribose can convert SPI microcapsules into a stable form. The application of SPI in industry would be increased.  相似文献   

2.

ABSTRACT

Sour whey powder (SWP) based edible coatings, with and without carboxymethyl cellulose (CMC), were used to reduce oxidative degradation of cut beef steak stored at 2C for 5 days. Comparison was with calcium caseinate (CC) and soy protein isolate (SPI). Colorimetric measurements showed the mean of the color consistency index for L*, a*and b*scales of SWP to be highest with (18.3) and without CMC (19.8). Control gave a significantly lower value of 10.6. The percent inhibition of thiobarbituric acid reactive substances (TBARS) compared to control was 40.9, 38.9 and 48.9%, respectively for CC, SPI and SWP. In the same order, this value increased to 51.9, 45.1 and 59.2% when CMC was added to the coating. The peroxide value was also significantly reduced by SWP. Oxidative degradation as reflected by an increase in carbonyls and decrease in sulfhydryls was also reduced by SWP and it was better at this than the other proteins. Moisture barrier property of SWP based coating was the best and CMC significantly enhanced this property of CC and SPI though they did not fare well by themselves. Data show that SWP can effectively be used to extend quality and shelf life of beef steak.

PRACTICAL APPLICATIONS

In 2006, the U.S.A. produced more than 11.95 million metric tons of beef. Most of this was consumed as hamburger meat and steaks. Unfortunately, once the animal is slaughtered, meat undergoes oxidative degradation. Retail cut meats are particularly susceptible. Various antioxidative coatings have been tried with varying levels of success. The industry is keen for inexpensive and natural means. Recently, we successfully used sour whey, a byproduct of cottage cheese and/or caseinate manufacture, as natural antioxidative coating to extend shelf life of cut vegetables and apples. This part of our study investigates its efficacy in reducing oxidative degradation of retail cut beef steaks.  相似文献   

3.
Alkali (pH12) and acid (pH1.5) pH-treated soy protein isolates (SPI) were incorporated (0.25–0.75% protein) into sols of myofibrillar protein (MP, 3%, in 0.6 M NaCl at pH 6.25) with or without 0.1% microbial transglutaminase (TG) to investigate the potential as meat processing ingredients. Static and dynamic rheological measurements showed significant enhancements of MP gelling ability by the inclusion of pH1.5-treated as well as preheated SPI (90 °C, 3 min). A 7-h incubation with TG accentuated the gel-strengthening effect by these SPI samples. The B subunit in 11S of SPI was the main component manifesting structure reinforcement in the mixed gels. The MP gelling properties were also greatly improved (P < 0.05) by the addition of 10% canola oil emulsions stabilized by pH-treated SPI. The principal force in the MP gels incorporated with pH-treated SPI was hydrophobic patches; in the presence of TG, cross-linking of previously dissociated A and B subunits of 11S was also intimately involved.  相似文献   

4.
Jong-Whan Rhim  Jun Ho Lee 《LWT》2007,40(2):232-238
Polylactic acid (PLA)-coated soy protein isolate (SPI) films were prepared by dipping SPI film into PLA solution. The effects of coating on improvements in mechanical and water barrier properties of the film were tested by measuring selected film properties such as tensile strength (TS), elongation at break (E), water vapor permeability (WVP), and water solubility (WS). TS of SPI films increased from 2.8±0.3 up to 17.4±2.1 MPa, depending on the PLA concentration of the coating solution, without sacrificing the film's extensibility. In contrast, the extensibility of SPI film coated with solution containing more than 2 g PLA/100 ml solvent, increased. WVP of PLA-coated SPI films decreased from 20 to 60 fold, depending on the concentration of PLA coating solution. Water resistance of SPI films was greatly improved as demonstrated by the dramatic decrease in WS for PLA-coated films. The improvement in water barrier properties was mainly attributed to the hydrophobicity of PLA.  相似文献   

5.
研究注模前酶作用时间对谷氨酰胺转移酶(TGase)改性大豆分离蛋白(SPI)膜性能的影响。在注模之前,将TGase(8U/g SPI)加入到成膜溶液中,分别在磁力搅拌下作用0、30、60、120min,然后注模成膜。利用质构仪检测蛋白膜的机械性能,结合哈克流变仪的动态黏弹实验及SDS-PAGE 实验进一步分析。注模前适度的酶作用(≤60min)在一定程度上有利于TGase 改性的SPI 膜机械强度的提高,特别是抗拉强度(TS)值;但是,时间不宜过长,因为注模前的酶作用也会诱导SPI 蛋白组分的聚沉反应,从而降低成膜溶液中可溶解蛋白的含量。结果表明,TGase改性SPI 膜时,一方面会诱导蛋白交联;另一方面,交联过多又会导致沉淀;在利用TGase 提高SPI 膜的机械性能时如何把握两者之间的关系,在交联的同时抑制酶促聚沉非常重要。  相似文献   

6.
In this study, an innovative method was developed to improve the shelf life of roasted peanuts. Sonication was combined with edible coating for enhancing the oxidative stability of roasted peanuts. Georgia green runner peanuts were roasted, subjected to sonication and then coated with whey protein isolate (WPI), ZEIN and carboxymethyl cellulose (CMC). Relative to the control, the oxidative stability of roasted-coated samples was improved by 80, 38 and 5% for CMC, WPI and ZEIN coating, respectively, while roasted-sonicated-coated samples were improved by 91, 52 and 27% for CMC, WPI and ZEIN coating, respectively. Sonication prior to coating resulted in 11, 14 and 22% improvement beyond the CMC, WPI and ZEIN coatings, respectively. Texture analysis showed there were no significant differences ( P <  0.05) in peanut texture between the treated and the control. Color results showed the HunterLab color parameters L, a, and b for most of the treatments did not have significant differences ( P <  0.05) compared with the control.

PRACTICAL APPLICATIONS


Edible coatings used in this study (carboxymethyl cellulose, whey protein isolate and ZEIN) were capable of acting as oxygen barriers to reduce peanut lipid rancidity. This research demonstrated the potential of power ultrasound to remove lipids from the peanut surfaces and improve coating adhesion. The texture and the color of coated peanuts did not change over the storage period. This study indicated that edible coatings in combination with sonication provided an alternative way for improving the oxidative stability and eventually the shelf life and quality of roasted peanuts.  相似文献   

7.
Lipid oxidation is an important factor affecting the quality of roasted peanuts. Coatings applied to the peanuts can enhance oxygen barriers to reduce rancidity. Ultrasonication was used to remove lipids from the peanuts prior to applying the coating to improve attachment of the coating on the peanut surface. Peanuts were roasted at 178°C for 15 min and then sonicated in hexane for 10 min. Whey protein isolate (WPI) 11%, corn protein (Zein) 15%, and carboxymethyl cellulose (CMC) 0.5% were used as coating materials. Sample treatments were: (1) roasted–coated with CMC (RCMC), WPI (RWPI), and Zein (RZEIN); (2) roasted–sonicated–coated with CMC (SCMC), WPI (SWPI), and Zein (SZEIN); (3) roasted–uncoated (R) as a control. Oxidative stability was investigated by gas chromatography–mass spectrometry (GC–MS) to detect formation of volatile compounds. The GC–MS indicated an eightfold, fivefold, and fourfold increase in hexanal formation in R, RZEIN, and SZEIN samples, respectively. But there was 80%, 91%, 18%, and 66% decrease in hexanal formation in RCMC, SCMC, RWPI, and SWPI samples, respectively, as compared to R. Sonication increased capability of coatings to delay hexanal formation by 11% and 48% for CMC and WPI, respectively, as compared to nonsonicated samples. Thus, the coating in combination with ultrasonication treatment was an effective method in delaying formation of oxidative volatile compounds and hence inhibiting rancidity of roasted peanuts.  相似文献   

8.
ABSTRACT: Physical properties of whey protein isolate (WPI) coating solution incorporating ascorbic palmitate (AP) and α‐tocopherol (tocopherol) were characterized, and the antioxidant activity of dried WPI coatings against lipid oxidation in roasted peanuts were investigated. The AP and tocopherol were mixed into a 10% (w/w) WPI solution containing 6.7% glycerol. Process 1 (P1) blended an AP and tocopherol mixture directly into the WPI solution using a high‐speed homogenizer. Process 2 (P2) used ethanol as a solvent for dissolving AP and tocopherol into the WPI solution. The viscosity and turbidity of the WPI coating solution showed the Newtonian fluid behavior, and 0.25% of critical concentration of AP in WPI solution rheology. After peanuts were coated with WPI solutions, color changes of peanuts were measured during 16 wk of storage at 25 °C, and the oxidation of peanuts was determined by hexanal analysis using solid‐phase micro‐extraction samplers and GC‐MS. Regardless of the presence of antioxidants in the coating layer, the formation of hexanal from the oxidation of peanut lipids was reduced by WPI coatings, which indicates WPI coatings protected the peanuts from oxygen permeation and oxidation. However, the incorporation of antioxidants in the WPI coating layer did not show a significant difference in hexanal production from that of WPI coating treatment without incorporation of antioxidants.  相似文献   

9.
The 3% chitosan solutions incorporating 10% fish oil (w/w chitosan, containing 91.2% EPA and DHA) with or without the addition of 0.8% vitamin E were prepared. Fresh lingcod (Ophiodon elongates) fillets were vacuum-impregnated in coating solution at 100 mm Hg for 10 min followed by atmospheric restoration for 15 min, dried, and then stored at 2 °C or −20 °C for 3-weeks and 3-months, respectively, for physicochemical and microbial quality evaluation. Chitosan–fish oil coating increased total lipid and omega-3 fatty acid contents of fish by about 3-fold, reduced TBARS values in both fresh and frozen samples, and also decreased drip loss of frozen samples by 14.1–27.6%. Chitosan coatings resulted in 0.37–1.19 and 0.27–1.55 log CFU/g reductions in total plate and psychrotrophic counts in cold stored and frozen stored samples, respectively. Chitosan–fish oil coatings may be used to extend shelf-life and fortify omega-3 fatty acid in lean fish.  相似文献   

10.
Soy protein isolate (SPI) was incubated with microbial transglutaminase (MTGase) enzyme for 5 (SPI/MTG(5)) or 24 (SPI/MTG(24)) h at 40 °C and the cross-linked SPI obtained was freeze-dried, and heated with 2% (w/v) ribose (R) for 2 h at 95 °C to produce combined-treated gels. Longer incubation period resulted in more compact and less swollen SPI particle shape when reconstituted with sugar solution. Thus, this MTGase treatment affected samples in terms of flow behaviour and gelling capacity. Rheological study showed different gelling profiles with the cross-linking treatments and combined cross-linked SPI gave a higher G′ value compared to single treated samples. These are due to the formation of additional ε-(γ-glutamyl)lysine bonds and “Maillard cross-links” within the SPI protein network during the MTGase incubation and heating in the presence of ribose (i.e. reducing sugar). Network/non-network protein analysis found that network protein increased with cross-linking treatment, which also resulted in different SDS–PAGE profiles. As in non-network protein fraction, A4 subunit was suggested to become part of the network protein as a result of combined cross-linking.  相似文献   

11.
Complete peanut‐surface coverage and strong adhesion are necessary for whey protein‐based oxygen barrier coatings to be totally effective in reducing the oxidative rancidity of peanuts. Peanuts coated with a fluidized‐bed coating system attained practically complete coverage, and coating efficiency results were consistent and reproducible. Addition of surfactant to the coating solution improved whey protein coating efficiency on blanched/roasted peanuts coated with a bench‐scale fluidized‐bed coating system. A lower level of surfactant addition to the coating solution was required to attain complete coverage, compared with previous studies on dip coating and pan coating of peanuts. Addition of surfactant to the coating solution and peanut preroughening both imparted good coating adhesion for fluidized‐bed‐coated peanuts. Compared with pan coating, fluidized‐bed coating required application of a greater amount of coating solution because of the loss of coating solution to the fluidized‐bed column wall during spraying. Overall, fluidized‐bed coating required a shorter processing time and provided the peanuts with better coating efficiency and adhesion. These results suggest that a fluidized‐bed coating system is a viable alternative coating process for whey protein coating of peanuts.  相似文献   

12.
Chee-Yuen Gan 《LWT》2009,42(1):174-179
Soy protein isolate (SPI), microbial transglutaminase (MTGase) and ribose (R) were used to modify physical properties and in-vitro starch hydrolysis of yellow noodle. Four types of noodles were produced; noodles with SPI (SPI/C noodles), noodles with SPI and ribose (SPI/R noodles), noodles with SPI and microbial transglutaminase (SPI/MTGase noodles) and noodles with SPI, ribose and MTGase (SPI/R/MTGase noodles). γ-glutamyl-lysine bonds by MTGase and ribose-induced Maillard reaction within SPI were induced by incubating the noodles for 5 h at 40 °C followed by steaming for 30 min. Cooked noodles were assessed for physical properties such as pH, color, tensile strength and elasticity, and in-vitro hydrolysis index (HI) and estimated glycemic index (GI). SPI/R/MTGase and SPI/MTGase noodles exhibited significantly (P < 0.05) higher tensile strength and elasticity than SPI/R and SPI/C noodles. HI and GI were in the order; SPI/R/MTGase < SPI/MTGase < SPI/R < SPI/C noodles. Incorporation of SPI that was treated with MTGase and ribose may be useful for controlling the texture and starch hydrolysis of yellow noodles. These attributes may be due to the formation of γ-glutamyl-lysine bonds during incubation of SPI, and ribose-induced Maillard reaction during steaming of the noodles.  相似文献   

13.
The effects of processing parameters, including the applied amount of microbial transglutaminase (MTGase), the pH of film-forming solution, air-drying temperature, as well as the additional pre-incubation, on the properties of MTGase-treated soy protein isolate (SPI) films were investigated. The treatment with low concentration of MTGase (4–10 units per gram of SPI, U g 1) significantly increased the tensile strength (TS) values of SPI films, while high concentration of MTGase (over 20 U g 1) resulted in significant decrease in the TS values (P  0.05). The elongation at break (EB) values of corresponding films gradually decreased, and the contact angle values persistently increased with the enzyme concentration. At alkaline pH range, the TS and EB values of MTGase-treated SPI films were significantly higher than that at pH 7.0 (P  0.05). Meanwhile, the contact angle values significantly decreased with increasing pH from 7.0 to 10.0 (P  0.05). The TS, EB and contact angle values of MTGase-treated films gradually but insignificantly decreased with increasing the air-drying temperature from 18 to 50 °C (P > 0.05). The properties of MTGase-treated films were also affected by the additional pre-incubation of film-forming solutions with MTGase before casting. Furthermore, the aggregation of SPI or its components induced by MTGase has been proved to mainly account for the influence of processing parameters on the properties of SPI films (MTGase-treated). Thus, low concentration of enzyme, alkaline pH range and low air-drying temperature, at which conditions the MTGase-induced aggregation of SPI in film-forming solutions could be in some extent inhibited or delayed, might facilitate the improvement of the properties of SPI films by MTGase, especially the mechanical and surface hydrophobic properties.Industrial relevanceThe development of biodegradable protein film has attracted a lot of attention worldwide. The enzymatic cross-linking induced by transglutaminase has been confirmed to improve mechanical and surface hydrophobic properties of cast films from most of food proteins, including soy proteins. Results of this study show that, the improvement of properties of cast films of soy proteins by transglutaminase treatment is largely dependent upon many processing parameters, e.g., enzyme concentration, the pH of film-forming solution and temperature.  相似文献   

14.
为了提高可食性大豆分离蛋白膜的性能 ,研究了多糖与交联剂混合使用对可食性膜性能的影响。结果表明 ,在大豆分离蛋白成膜液中添加 0 .5 % (W/V)的果胶和 0 .1% (W/V)的葡萄糖能有效增加膜的机械强度 ,降低膜对水蒸汽、氧气的透性。因此 ,果胶 -葡萄糖的组合对膜各性能的改善效果较佳。果胶 -葡萄糖能改善大豆分离蛋白成膜特性的可能机理是因为它们增加了蛋白分子之间的交联。  相似文献   

15.
微藻油富含ω-3多不饱和脂肪酸二十二碳六烯酸(DHA)与二十碳五烯酸(EPA),在液体食品中的应用日趋广泛。但是微藻油极易在食品加工、保藏和消化过程中发生氧化劣变;同时脂溶性的微藻油难以添加至液体食品中。因此,改善和提高微藻油的稳定性是其应用到食品中的关键问题。本文利用大豆分离蛋白(SPI)/壳聚糖(CS)复合凝聚物(Coacervate)制备了微藻油乳液。由于乳液的氧化稳定性很大程度上依赖于其物理稳定性,本文系统研究了微生物谷氨酰胺转氨酶(m TGase)交联对微藻油乳液物理稳定性及氧化稳定性的影响。实验结果表明,在p H为6.0,CS/SPI比例为0.1 g/g,m TGase浓度为25 U/g SPI的条件下,m TGase对SPI/CS凝聚物的交联效果最好。m TGase交联明显改善了微藻油乳液的物理稳定性及氧化稳定性,并显著提高了微藻油的乳化效率。通过此方法制备的微藻油乳液产品可应用于豆奶等液体蛋白饮料从而达到强化DHA的目的。  相似文献   

16.
The modification of soy protein isolate (SPI) with different amounts of a naturally occurring cross-linking agent (genipin, Gen) and glycerol used as plasticizer was carried out in this work. The films yielded were cast from heated and alkaline aqueous solution of SPI, glycerol and Gen and then dried in an oven. Total soluble matter, water vapor permeability and mechanical properties were improved by adding small amounts of Gen. These properties were not significantly affected (P ? 0.05) by additions exceeding 2.5% (w/w of SPI). The opacity and cross-linking degree were linearly increased with the addition of Gen, whereas the swelling ratios in water were decreased. All the films were submitted to degradation under indoor soil burial conditions and the weight loss of the films was measured at different times. This study revealed that the film biodegradation time can be controlled or modified from at least 14 to 33 days. The tests performed showed the potential of Gen to improve the SPI film properties, in which the possibility of employing such new films as biodegradable food packaging was raised.  相似文献   

17.
The effect of (a) limited hydrolysis [0.5–2.0% degree of hydrolysis (DH)] with Alcalase™, (b) cross-linking with transglutaminase (TGase) and (c) combinations of these modifications on the nitrogen solubility (pH 3–8) of soy protein isolate (SPI) was investigated. Between pH 3.0 and 5.0, SPI hydrolysates, hydrolysates of cross-linked SPI and the cross-linked products of SPI hydrolysates displayed significant (P<0.05) increases in solubility compared to unmodified SPI. Cross-linking pre- or post hydrolysis did not alter the overall trend of increased (P<0.05) solubility relative to the unmodified control at low pH. At 2% DH, cross-linking pre- or post-hydrolysis resulted in greater solubility (P<0.05) than that observed in hydrolysates per se at low pH. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS–PAGE) indicated that the 22 kDa 11S basic polypeptide was relatively resistant to Alcalase hydrolysis and that the 18 and 22 kDa 11S basic polypeptides were not susceptible to TGase cross-linking. The results demonstrate that a combination of enzymatic treatments and the order in which they are applied may have potential for creating novel food ingredients with improved functional properties, especially those properties that are dependant on high solubility at low pH.  相似文献   

18.
降低含油量是油炸食品健康发展的保证。本研究探讨了甲基纤维素(MC)和大豆分离蛋白(SPI)两种不同种类涂膜物质对油饼含油量和抑油率的影响;通过扫描电镜(SEM)和苏丹红染色后光学显微镜(OM)观察研究MC涂膜对油脂渗透和迁移的影响,并探究MC涂膜降低含油量的机理;通过色差仪和TPA研究了涂膜对油饼感官品质的影响。结果表明:与对照组相比,两种涂膜均能显著降低油饼含油量(p0.05),MC涂膜抑油效果优于SPI,当MC浓度为1%时抑油效果最佳,抑油率为53.77%;表面油和内部油分别降低58.66%和45.43%;通过微观结构分析发现涂膜能够使得油饼表面光滑,减少孔洞,同时能显著降低其渗透深度。这表明,涂膜可以有效降低油饼含油量,使得油饼表面结构致密,抑制油脂的渗透和迁移;且研究表明MC涂膜对样品油炸后色泽及质构影响较小,为进一步生产低油高品质油饼奠定理论基础和技术指导。  相似文献   

19.
Peanut products are susceptible to develop rancid and off‐flavours through lipid oxidation. Preservation of these products is one of the problems in the peanut industry. The purpose of this work was to determine the sensory and chemical stability of roasted peanuts (RP) coated with different edible coatings: carboxymethyl cellulose (RP‐CMC), methyl cellulose (RP‐MC) or whey protein (RP‐WPI) during storage. Sensory attributes and chemical indicators (peroxide and p‐anisidine values, and conjugated dienes) of lipid oxidation were measured during storage. Chemical indicator values and intensity ratings of oxidised and cardboard flavours had lower increase in RP‐CMC, RP‐MC and RP‐WPI during storage than in RP, whereas roasted peanutty flavour showed a lower decrease. The stability of RP‐CMC is about a double longer with respect to RP. These results indicate that edible coatings preserve the sensory properties of roasted peanuts. Carboxymethyl cellulose exhibited the best protecting effect on this product.  相似文献   

20.
Using hydrocolloids to decrease oil absorption in banana chips   总被引:1,自引:0,他引:1  
The aim of this research was to investigate the influence of hydrocolloids (alginate, CMC and pectin) on the oil absorption in fried banana chips. The control banana chips (no hydrocolloid treatment) had oil content as high as 40 g/100 g sample, whereas the sample blanched in 0.5 g CaCl2/100 ml water and following with immersion in 1 g alginate/100 ml water exhibited a small decrease of oil uptake (p ≤ 0.05) to 38 g/100 g sample. The others which treated with 0.5 g CaCl2/100 ml and 1 g pectin/100 ml water, and with 0.25 g CaCl2/100 ml water and 1 g CMC/100 ml water absorbed much less oil (p ≤ 0.05), approximately 23 g/100 g sample. Besides, pectin-treated chips had higher sensory scores in all attributed than CMC-treated sample. These resulted showed that pectin was the most effective hydrocolloid for low fat fried banana chip production. Scanning electron microscope photographs indicted that coating banana chips with pectin was effective in protecting the cellular structure of the banana tissue from damage during deep-fat frying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号