首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Addition of sarcoplasmic fraction from bigeye snapper (Priacanthus tayenus) into natural actomyosin in combination with setting at 40°C resulted in the cross-linking of myosin heavy chain (MHC). Higher amount of sarcoplasmic fraction and extended setting time resulted in a higher cross-linking, indicating the presence of endogenous transglutaminase (TGase) in bigeye snapper muscle. TGase activity was activated by calcium ion and reducing agents (β-mercaptoethanol and dithiotreitol), but was inhibited by N-ethylmaleimide (NEM), NH4Cl and EDTA. TGase in the sarcoplasmic fraction was not stable when heated at temperature above 40°C, particularly with an increasing heating time. TGase was stable at pH ranging from 5.0 to 7.0, in which more than 70% activity was retained. Therefore, sarcoplasmic fraction possessed a cross-linking activity caused by TGase and its recovery for further uses should be considered.  相似文献   

2.
Proteolytic activity of pyloric caeca extract (PCE) from bigeye snapper (Priacanthus macracanthus) was studied. The highest activity was observed at 55 °C and pH 8.0 when casein, Nα-Benzoyl-dl-arginine-p-nitroanilide (BAPNA) and Nα-p-Tosyl-l-arginine methyl ester hydrochloride (TAME) were used as the substrates. The activity was inhibited markedly by 1 mg/ml soybean trypsin inhibitor, whereas E-64, pepstatin A and EDTA exhibited a negligible effect on activity. The results suggested that a trypsin-like enzyme was most likely the major proteinase in PCE. As determined by activity staining, two proteolytic activity bands with apparent molecular weights of 55 and 24 kDa were found. Gelatin hydrolysate from bigeye snapper skin prepared using PCE exhibited the increases in 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities and ferric reducing antioxidative power (FRAP) as degrees of hydrolysis (DHs) increased (P < 0.05). Hydrolysates derived from gelatin using Alcalase combined with PCE showed the highest ABTS radical scavenging activity (P < 0.05). Gelatin hydrolysate prepared using Alcalase in combination with Neutrase or PCE at 500 and 1000 ppm, respectively, retarded the oxidation in both linoleic acid oxidation and lecithin liposome oxidation systems. The antioxidative peptide of gelatin hydrolysate had a molecular weight of 1.7 kDa.  相似文献   

3.
The effects of type and concentration of plasticizers on the mechanical properties (tensile strength, TS and elongation at break, EAB), water vapor permeability, light transmission, transparency and color of fish skin gelatin edible films from bigeye snapper (Priacanthus marcracanthus) and brownstripe red snapper (Lutjanus vitta) were investigated. At the same plasticizer concentration, fish skin gelatin films from both species plasticized with glycerol (Gly) showed the greatest EAB (P<0.05), whereas ethylene glycol (EG) plasticized films showed the highest TS (P<0.05). Films prepared from brownstripe red snapper skin gelatin exhibited slightly greater TS than those of bigeye snapper skin gelatin (P<0.05) when Gly and sorbitol (Sor) were used. EG, polyethylene glycol 200 (PEG 200) and polyethylene glycol 400 (PEG 400) affected the mechanical properties of both films differently. Films generally became more transparent and EAB, water vapor permeability (WVP), as well as light transmission of films increased, but TS and yellowness decreased with increasing plasticizer concentrations.  相似文献   

4.
Fish skin gelatin was extracted from the skin of bigeye snapper (Priacanthus macracanthus) and brownstripe red snapper (Lutjanus vitta) with yields of 6.5% and 9.4% on the basis of wet weight, respectively. Both skin gelatins having high protein but low fat content contained high hydroxyproline content (75.0 and 71.5 mg/g gelatin powder). The bloom strength of gelatin gel from brownstripe red snapper skin gelatin (218.6 g) was greater than that of bigeye snapper skin gelatin (105.7 g) (P<0.05). The addition of microbial transglutaminase (MTGase) at concentrations up to 0.005% and 0.01% (w/v) increased the bloom strength of gelatin gel from bigeye snapper and brownstripe red snapper, respectively (P<0.05). However, the bloom strength of skin gelatin gel from both fish species decreased with further increase in MTGase concentration. SDS-PAGE of gelatin gel added with MTGase showed the decrease in band intensity of protein components, especially, β- and γ- components, suggesting the cross-linking of these components induced by MTGase. Microstructure studies revealed that denser and finer structure was observed with the addition of MTGase.  相似文献   

5.
The effect of iced storage of bigeye snapper (Priacanthus tayenus) on the chemical composition, properties and acceptability of Som-fug was investigated. During 15 days of iced storage, total volatile base (TVB), trimethylamine (TMA) and TCA-soluble peptide contents as well as thiobarbituric reactive substances (TBARS) of fish muscle increased continuously after 3 days of storage (p < 0.05). It was suggested that deterioration, protein degradation and lipid oxidation proceeded with increasing storage time. Som-fug prepared from surimi of bigeye snapper stored in ice for different times had similar pH, acidity and lactic acid bacteria count at the end of the fermentation (30 °C, 48 h). Generally, higher content of TCA-soluble peptides and higher TBARS were found in fermented Som-fug produced from bigeye snapper stored in ice for a longer time (p < 0.05). Hardness, adhesiveness, springiness, cohesiveness, and resilience of fermented Som-fug decreased with a concomitant increase in weight loss, released water and expressible water contents when fish kept for a longer time were used (p < 0.05). L, a, b, whiteness and the likeness for appearance, colour, texture and flavour of Som-fug decreased when fish kept in ice for an extended time were used (p < 0.05). However, the taste likeness was not affected by iced storage time (p > 0.05). No differences in overall liking were noticeable when fish kept in ice for up to 12 days were used for Som-fug production (p > 0.05). Therefore, the quality of fish used as raw material should be an important factor in determining the characteristics of Som-fug.  相似文献   

6.
Effects of different oxidised phenolic compounds (ferulic acid, OFA; tannic acid, OTA; catechin, OCT and caffeic acid, OCF) at different levels (0–0.25% of protein content) on the properties of gels from bigeye snapper (Priacanthus tayenus) surimi were investigated. Breaking force and deformation of surimi gel varied with types and amounts of oxidised phenolic compounds. Gels added with 0.20% OFA, 0.05% OTA, 0.15% OCF and 0.05% OCT exhibited the marked increases in both breaking force and deformation, compared with the control (P < 0.05). Those increases were associated with lower expressible moisture content. No increases in both breaking force and deformation were observed when ferulic acid without oxygenation at alkaline pH was added, regardless of amount added (P > 0.05). No changes in the whiteness of gel were found with addition of OFA (P > 0.05), but the decreases in whiteness were noticeable as other oxidised phenolics were incorporated (P < 0.05). Different microstructures were obtained among gels with different oxidised phenolics. The physicochemical properties of natural actomyosin suggest that oxidised phenolics could induce conformational changes and the cross-linking through amino groups or the induction of disulphide bond formation. Therefore, the addition of oxidised phenolic compounds at the optimum level could increase the gel strength of surimi gel.  相似文献   

7.
The rheological and functional properties of gelatin from the skin of bigeye snapper (Priacanthus hamrur) fish were assessed. The protein content of dried gelatin was 94.6% and moisture content was 4.2%. The amino acid profile of gelatin revealed high proportion of glycine and imino acids. The bloom strength of solidified gelatin was 108 g. The average molecular weight of fish skin gelatin was 282 kDa as determined by gel filtration technique. The emulsion capacity (EC) of gelatin at a concentration of 0.05% (w/v) was 1.91 ml oil/mg protein and with increase in concentration, the EC values decreased. The gelling and melting temperatures of gelatin were 10 and 16.8 °C, respectively as obtained by small deformation measurements. The flow behavior of gelatin solution as a function of concentration and temperature revealed non-Newtonian behavior with pseudoplastic phenomenon. The Casson and Herschel–Bulkley models were suitable to study the flow behavior. The yield stress was maximum at 10 °C with the concentration of 30 mg/ml. Thermal gelation behavior of threadfin bream (Nemipterus japonicus) mince in presence of different concentration of gelatin was assessed. Gelatin at a concentration of 0.5% yielded higher storage modulus (G′) value than control. Frequency sweep of heat set gel with gelatin revealed strong network formation.  相似文献   

8.
The functional properties of pH-shifted protein isolates from bigeye snapper head were evaluated. Alkaline isolate showed a superior salt-solubility and gel forming ability to acid counterpart as indicated by a regular gel structure (i.e., imaged by scanning electron microscope) with higher gel strength and lower expressible drip (p < 0.05). Acid isolate exhibited higher surface hydrophobicity (p < 0.05) and thereby improved interfacial properties. Emulsifying activity index of acid isolate was lower than commercial whey protein and egg-white (p < 0.05) but its emulsion stability was better (p < 0.05). Both protein isolates had lower foamability than commercial proteins but their foam stability was not different (p > 0.05).  相似文献   

9.
Extraction and some properties of pepsin-solubilised collagens from the skin of bigeye snapper (Priacanthus tayenus) were investigated. Addition of bigeye snapper pepsin (BSP) at a level of 20 kUnits/g of defatted skin resulted in an increased content of collagen extracted from bigeye snapper skin. The yields of collagen from bigeye snapper skin extracted for 48 h with acid and with BSP were 5.31% and 18.74% (dry basis), respectively. With pre-swelling in acid for 24 h, collagen extracted with BSP at a level of 20 kUnits/g of defatted skin for 48 h had a yield of 19.79%, which was greater than that of collagen extracted using porcine pepsin at the same level (13.03%). The skin collagen was characterised to be type I with no disulfide bond. Electrophoretic study revealed slight differences in molecular weight between acid-solubilised collagen and all pepsin-solubilised collagens. The molecular weights of α1 and α2 chains in acid-solubilised collagen were estimated to be 120 and 112 kDa, respectively, whereas α1 and α2 chains of pepsin-solubilised collagens had molecular weights of 118 and 111 kDa, respectively. The result suggested that these pepsin-solubilised collagens might undergo partial cleavage in the telopeptide region by pepsin treatment. The maximum transition temperature (Tmax) of acid-solubilised collagen was observed at 32.5 °C, which was slightly higher than that of pepsin-solubilised collagens (by about 1 °C). Generally, all collagens were highly solubilised in the pH range of 2–5 and sharply decreased at the neutral pH. No changes in solubility were observed in the presence of NaCl up to 3% (w/v) and the decrease was more pronounced with increasing NaCl concentration.  相似文献   

10.
Effects of irradiation at different doses (0, 2 and 6 kilogray (kGy)) on the microbiological, chemical and physical properties of Som-fug, a Thai fermented fish mince, were investigated. Lactic acid bacteria (LAB), yeast and mould counts in samples irradiated at 6 kGy were not detectable throughout the storage of 30 days at 4 °C, whereas no growth was found in the sample irradiated at 2 kGy within the first 10 days. Generally, greater carbonyl contents of lipid and protein, as well as thiobarbituric acid-reactive substances (TBARS), were noticeable in the irradiated samples, than in the non-irradiated sample (p < 0.05). The carbonyl contents and TBARS increased with increasing storage time and the rate of increase was more pronounced in samples irradiated at higher dose (p < 0.05). With increasing storage time, Som-fug irradiated at 6 kGy showed greater decreases in hardness, adhesiveness, springiness and cohesiveness, than did non-irradiated samples and those irradiated at 2 kGy (p < 0.05). L value of all samples decreased, whereas a and b values increased throughout storage (p < 0.05). Lower acceptance in all attributes was observed in the samples irradiated at 6 kGy, than in other samples, particularly when storage time increased (p < 0.05). However, samples irradiated at 2 kGy showed no changes in acceptability within 20 days. The results revealed that irradiation at high dose (6 kGy) might induce lipid and protein oxidation, though the growth of microorganisms was inhibited. Therefore, the irradiation at low dose (2 kGy) could be used to control the overfermentation of Som-fug up to 20 days at 4 °C without adverse effects on quality and acceptability.  相似文献   

11.
Gelatin was extracted from alkali-pretreated skin of zebra blenny (Salaria basilisca) using commercial pepsin with a yield of 18 g/100 g of skin sample. The polypeptides pattern, gel strength, viscosity, textural parameters and functional properties of the zebra blenny skin gelatin (ZBSG) were investigated. Amino acid analysis revealed that ZBSG contained almost all essential amino acids, with glycine being the most predominant one. ZBSG was identified as a type I gelatin, containing α1 and α2-chains as the major constituents. Its gel strength and viscosity were 170.2 g and 5.95 cP, respectively. Fourier transformed infrared spectroscopy (FT-IR) spectra showed helical arrangements in its structure. Its solubility and functional properties were concentration-dependent. While foam expansion (FE) and foam stability (FS) increased with the increase of concentration, emulsifying activity index (EAI) and emulsion stability index (ESI) were noted to decrease. ZBSG also showed strong clarification ability particularly for apple juice, without affecting nutritional value.  相似文献   

12.
Kemel Jellouli 《LWT》2011,44(9):1965-1970
Gelatin was extracted from the skin of grey triggerfish (Balistes capriscus) by the acid extraction process with a yield of 5.67 g/100 g skin sample on the basis of wet weight. The chemical composition and functional properties of gelatin were investigated. The gelatin had high protein (89.94 g/100 g) but low fat (0.28 g/100 g) contents. Differences in the amino acid composition between grey triggerfish skin gelatin (GSG) and halal bovine gelatin (HBG) were observed. GSG contained a lower number of imino acids (hydroxyproline and proline) (176 residues per 1000 residues) than HBG (219 residues per 1000 residues), whereas the content of serine was higher (40 versus 29 residues per 1000 residues, respectively). The gel strength of the GSG (168.3 g) was lower than that of HBG (259 g) (p < 0.05) possibly due to lower hydroxyproline content. Grey triggerfish skin gelatin exhibited a slightly lower emulsifying activity and water-holding capacity but greater emulsifying and foam stability, foam formation ability and fat-binding capacity than the halal bovine gelatin (p < 0.05). SDS-PAGE of GSG showed high band intensity for the major protein components, especially, α- and β-components and a similar molecular weight distribution to that of standard calf skin collagen type I.  相似文献   

13.
The effects of washing with hydrogen peroxide (H2O2) and sodium hypochlorite (NaOCl) solutions on the gel-forming ability and physicochemical properties of surimi produced from bigeye snapper (Priacanthus tayenus), stored in ice for up to 14 days, were investigated. Generally, pH and the trichloroacetic acid (TCA)-soluble peptide content of washed mince varied, depending on the type of oxidizing agent and storage time of the fish. With increasing time of storage, the pHs of water- and H2O2-washed mince were lower than that of NaOCl-washed mince (P < 0.05). However, no differences in the TCA-soluble peptide contents of the resulting mince washed with any media were observed (P > 0.05). Washing with 20 ppm NaOCl resulted in the highest increase in both the breaking force and the deformation of mince from fish stored in ice for all the times studied (P < 0.05). Natural actomyosin (NAM) extracted from NaOCl-washed mince had higher surface hydrophobicity and disulfide bond (SS) content than that of water-washed mince (P < 0.05). With no effect on Ca2+-, Mg2+-, or Mg2+–Ca2+-ATPase activities, NaOCl washing resulted in an increase in Mg2+–EGTA-ATPase activity of NAM (P < 0.05). The results suggested that washing mince with the appropriate type and concentration of oxidizing agent can improve the gelling ability of surimi, particularly from low quality fish.  相似文献   

14.
Gelatin was obtained from cobia (Rachycentron canadum) skins, which is an important commercial species for marine fish aquaculture, and it was compared with gelatin from croaker (Micropogonias furnieri) skins, using the same extraction methodology (alkaline/acid pre-treatments). Cobia skins gelatin showed values of protein yield, gelatin yield, gel strength, melting point, gelling point and viscosity higher than the values found from croaker skins gelatin. The values of turbidity and Hue angle for cobia and croaker gelatins were 403 and 74 NTU, and 84.8° and 87.3°, respectively. Spectra in the infrared region had the major absorption band in the amide region for both gelatins, but it showed some differences in the spectra. The proline and hydroxyproline contents from cobia skins gelatin (205 residues/1000 residues) was higher than from croaker skins gelatin (188 residues/1000 residues). SDS-PAGE of both gelatins showed a similar molecular weight distribution to that of standard collagen type I. Therefore, cobia skins could be used as a potential marine source of gelatin obtainment for application in diversified industrial fields.  相似文献   

15.
The characteristics and functional properties of gelatin from skin cuttlefish (Sepia officinalis) were investigated and compared to those of halal bovine gelatin (HBG). The gelatin extraction efficiency was improved by an acid-swelling process in the presence of smooth hound crude acid protease extract (SHCAP). The yields of gelatins from cuttlefish skin after 48 h with acid and with crude acid protease (15 units/g alkaline-treated skin) were 2.21% and 7.84%, respectively. The gelatin from skin cuttlefish had high protein (91.35%) but low fat (0.28%) contents. Compared to HBG, the cuttlefish-skin gelatin (CSG) has different amino acids composition than halal bovine gelatin. CSG contained slightly low hydroxyproline and proline (180‰) than HBG (219‰), whereas the content of serine was higher (49‰ versus 29‰). The gel strength of the gelatin gel from CSG (181 g) was lower than that of HBG (259 g) (p < 0.05) possibly due to lower hydroxyproline content. Cuttlefish-skin gelatin exhibited a similar emulsifying activity but greater emulsifying and foam stability than the halal bovine gelatin (p < 0.05). Foam formation ability, foam stability and water-holding capacity of CSG were slightly lower than those of the HBG, but fat-binding capacity was higher in the cuttlefish gelatin.  相似文献   

16.
The physicochemical characteristics of gelatin obtained by different pretreatments of sturgeon (Acipenser baeri) skin with alkaline and/or acidic solutions have been studied. Visual appearance, pH, gel strength, viscosity and amino acid profile of the gelatins were evaluated. Pretreatment with alkaline solutions of Ca(OH)2 and/or acetic acid (HAC) provided gelatin with a favourable colour. Pretreatment with alkali removed noncollagenous proteins effectively, whilst acid induced some loss of collagenous proteins. Gel strength and viscosity of gelatin pretreated with HAC or alkali followed by HAC were as high as gelatin extracted in the presence of protease inhibitors. Amino acid composition had no significant effect on the gelatin characteristics. The total acid concentration for the highest gel strength was inversely proportional to ionisation strength, and the preferred pH for extracting gelatin with the optimum gel strength was approximately 5.0. The results showed that any available protons, regardless of the type or concentration of the acid, inhibit protease activity, which significantly affects the gelatin characteristics.  相似文献   

17.
Gelatin was extracted from the skin of farmed giant catfish (Pangasianodon gigas) with a yield of 20.1 g/100 g skin sample on the basis of wet weight. The chemical composition and properties of gelatin were characterised. The gelatin had high protein (89.1 g/100 g) but low fat (0.75 g/100 g) content and contained a high number of imino acids (proline and hydroxyproline) (211 residues per 1000 residues). Giant catfish skin gelatin had a slightly different amino acid composition than calf skin gelatin. The bloom strength of the gelatin gel from giant catfish skin gelatin (153 g) was greater than that of calf skin gelatin (135 g) (P < 0.05). Viscosity, foam capacity and foam stability of gelatin from giant catfish skins were in general greater than those of the gelatin from calf skin tested. SDS-PAGE of giant catfish skin gelatin showed a high band intensity for the major protein components, especially, α-, β- and γ-components and was similar to that of standard calf skin collagen type I.  相似文献   

18.
Gelatin was extracted from the skin of splendid squid (Loligo formosana) at different temperatures (50, 60, 70 and 80 °C) with extraction yield of 8.8%, 21.8%, 28.2%, and 45.3% (dry weight basis) for G50, G60, G70 and G80, respectively. Gelatin from the skin of splendid squid had a high protein content (∼90%) with low moisture (8.63–11.09%), fat (0.22–0.31%) and ash contents (0.17–0.68%). Gelatin extracted at higher temperature (G80) had a relatively higher free amino group content than gelatin extracted at lower temperatures (G50, G60 and G70) (P < 0.05). All gelatins contained α- and β-chains as the predominant components. Amino acid analysis of gelatin revealed the high proline and hydroxyproline contents for G50 and G60. FTIR spectra of obtained gelatins revealed the significant loss of molecular order of the triple-helix. The gel strength of gelatin extracted at lower temperature (G50) was higher than that of gelatins extracted at higher temperatures including G60, G70 and G80, respectively. The net charge of G50, G60, G70 and G80 became zero at pHs of 6.84, 5.94, 5.49, and 4.86, respectively, as determined by zeta potential titration. Gelatin extracted at higher temperature (G80) had the lower L* value but higher a* and b* values, compared with those extracted at lower temperatures (P < 0.05). Emulsion activity index decreased, whilst emulsion stability index, foam expansion and stability increased as the concentration (1–3%) increased (P < 0.05). Those properties were governed by extraction temperatures of gelatin. Thus gelatin can be successfully extracted from splendid squid skin using the appropriate extraction temperature.  相似文献   

19.
Antioxidant and functional properties were evaluated for gelatin hydrolysates obtained from sole and squid skin gelatin by Alcalase, with a degree of hydrolysis of ∼35% and ∼50%, respectively. Both hydrolysates mainly consisted of peptides below 6.5 kDa, together with peptidic material from around 16 to 6.5 kDa. Moreover, the squid hydrolysate showed a peptide band of around 26 kDa. Antioxidant properties of both gelatins were highly increased by hydrolysis, especially ABTS and metal chelating abilities. The squid hydrolysate showed the highest antioxidant capacity by FRAP, ABTS and metal chelating assays in spite of the lower content in hydrophobic amino acids. Both gelatin hydrolysates had a good solubility (over 95%). The emulsifying activity index (EAI) decreased with increasing concentration. Conversely, the foam expansion increased with increasing concentration. However, both foam and emulsion stabilities were not apparently affected by the concentration of hydrolysate. In the case of the sole hydrolysate, which showed a lower degree Pro and Lys hydroxylation, foam stability was very poor, and 50% of foam expansion was lost after 5 min at all concentrations.  相似文献   

20.
H.Y. Liu  J. Han 《LWT》2009,42(2):540-544
Three gelatins were prepared from channel catfish head bones by hot water after the head was pretreated with alkali protease, quickly desalted by 0.4 mol/L HCl and soaked in 9 g/L Ca(OH)2. The extraction conditions of gelatins were 5 °C, pH 4.0, 4 h, 82 °C, pH 2.5, 2 h and 90 °C, pH 3.0, 3 h, respectively. The studies showed there were many differences between these gelatins. The first head bone gelatin contained high content of imino residues and more high molecular weight proportions of β and γ components. Gel strengths of the second and third gelatins were 209 ± 7 g and 117 ± 5 g, lower than that of the first head bone gelatin (282 ± 11 g). Furthermore, the first head bone gelatin achieved the highest gelling and melting points. The first head bone gelatin showed strong ability of clarification when it was used to clarify apple juice. At the same time, the nutritional components of apple juice changed a little except Vitamin C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号