首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The aim of this study was to develop polymerase chain reaction (PCR) assay for specific detection of chicken meat using designed primer pair based on mitochondrial D-loop gene for amplification of 442 bp DNA fragments from fresh, processed and autoclaved meat and meat products. The PCR result was further verified by restriction digestion with HaeIII and Sau3AI enzymes for specific cutting site in amplified DNA fragments. The specificity of assay was cross tested with DNA of cattle, buffalo, sheep, goat, pig, duck, guinea fowl, turkey and quail, where amplification was observed only in chicken without cross reactivity with red meat species. However positive reaction was also observed in quail and turkey. In this study, no adverse effects of cooking and autoclaving were found on amplification of chicken DNA fragments. Thus, the detection limits was found to be less than 1% in admixed meat and meat products. The developed assay was found specific and sensitive for rapid identification of admixed chicken meat and meat products processed under different manufacturing conditions.  相似文献   

2.
建立并优化了基于COI序列的DNA微条形码技术(mini-barcoding)检测熟肉制品中11种常见肉类掺假的方法。样品经超声与真空冷冻干燥处理,提取DNA模板和PCR扩增后,目标扩增物经切胶纯化后进行克隆测序,并将测序结果提交GenBank数据库Blast比对。筛选出适合猪、牛、羊、鸡、鸭、鸽子、马、驴、鹅、兔、鼠11种肉类的扩增的通用引物COI-A,对PCR扩增条件进行优化,并建立18个掺假模式,对低经济价值肉类(猪、鸡、鸭、马、驴、鼠)的掺入的最低比例进行考察。结果表明:11种熟肉的DNA经通用引物COI-A扩增后,其扩增效率均为100%,18个掺假模式中,牛肉和羊肉中掺入6种低经济价值肉类的最低检出比例为5%,而掺入鸡肉的最低检出比例为10%,而鹅肉、鸽子肉和兔肉的掺假模式中最低检出比例为10%;利用本方法检测30批次市售样品,发现有18批次的熟肉制品存在掺假情况。该方法前处理简单,灵敏度合适,重现性好,可作为高经济价值熟肉制品中掺假低经济价值肉类的有效检测方法。  相似文献   

3.
建立适用于肉类罐头等长时间高温加工食品中猪、牛、羊、鸡、鸭5种动物源成分种属特异性PCR鉴别方法。通过使用猪、牛、羊、鸡、鸭的种属特异性引物,对5种动物的总DNA模板进行PCR扩增,得到分别为212、147、202、131、201 bp的扩增产物,将测序结果在美国国家生物技术信息中心(US National Center for Biotechnology Information,NCBI)进行BLAST比对确认实验的准确性,并对市售罐头样品进行检测。该方法5种动物引物种属特异性良好,对猪、牛、羊、鸭源性成分的检测灵敏度可达1%,对鸡源性成分的检测灵敏度为2.5%。在对市售肉类罐头样品的检测中,6.6%样品与标签标注结果不符。该方法操作简便,成本低,结果准确可靠,可广泛用于肉类罐头食品和长时间高温加工食品中猪、牛、羊、鸡、鸭5种动物源成分的鉴别,具有十分广泛的实际应用价值。  相似文献   

4.
The polymerase chain reaction (PCR) was applied to identify six meats (cattle, pig, chicken, sheep, goat and horse) as raw materials for products. By mixing seven primers in appropriate ratios, species-specific DNA fragments could be identified by only one multiplex PCR. A forward primer was designed on a conserved DNA sequence in the mitochondrial cytochrome b gene, and reverse primers on species-specific DNA sequences for each species. PCR primers were designed to give different length fragments from the six meats. The products showed species-specific DNA fragments of 157, 227, 274, 331, 398 and 439 bp from goat, chicken, cattle, sheep, pig and horse meats, respectively. Identification is possible by electrophoresis of PCR products. Cattle, pig, chicken, sheep and goat fragments were amplified from cooked meat heated at 100 or 120°C for 30 min, but horse DNA fragments could not be detected from the 120°C sample. Detection limits of the DNA samples were 0.25 ng for all meats.  相似文献   

5.
Heterocyclic aromatic amines (HAAs), potent mutagens/carcinogens, are pyrolysis formed during the cooking of meat and fish. In the present study, the effects of various cooking methods, pan-frying, deep-frying, charcoal grilling and roasting on the formation of HAAs in chicken breast and duck breast were studied. The various HAAs formed during cooking were isolated by solid-phase extraction and analyzed by high-performance liquid chromatography (HPLC). Results showed that chicken breast cooked by charcoal grilling contained the highest content of total HAAs, as high as 112 ng/g, followed by pan-fried duck breast (53.3 ng/g), charcoal grilled duck breast (32 ng/g), pan-fried chicken breast (27.4 ng/g), deep-fried chicken breast (21.3 ng/g), deep-fried duck breast (14 ng/g), roasted duck breast (7 ng/g) and roasted chicken breast (4 ng/g). For individual HAA, the most abundant HAA was 9H-pyrido-[4,3-b]indole (Norharman), which was detected in charcoal grilled chicken breast at content as high as 32.2 ng/g, followed by 1-methyl-9H-pyrido[4,3-b] indole (Harman) and 2-amino-1-methyl-6-phenylimidazo[4,5-f]pyridine(PhIP) at 32 and 31.1 ng/g in charcoal grilled chicken breast, respectively. The content of PhIP in pan-fried duck and chicken breast were 22 and 18.3 ng/g, respectively. Generally, the type and content of HAAs in cooked poultry meat varies with cooking method and cooking conditions.  相似文献   

6.
The method performance characteristics of commercially available PCR kits for animal species identification were established. Comminuted meat products containing different levels of pork were prepared from authentic beef, chicken, and turkey. These meat products were analysed in the raw state and after cooking for 20 min at 200 °C. For both raw and cooked meats, the PCR kit could correctly identify the animal species and could reliably detect the addition of pork at a level below 0.1%. A survey of 42 Turkish processed meat products such as soudjouk, salami, sausage, meatball, cured spiced beef and doner kebap was conducted. Thirty-six samples were negative for the presence of pork (< 0.1%) and four were found to be correctly labelled as containing pork. However, one sausage sample was labelled as containing 5% beef, but beef DNA was not detected and a meatball sample labelled as 100% beef was found to contain chicken. Another turkey meatball sample was predominantly chicken.  相似文献   

7.
In order to prevent fraud in the sale and strengthen quality assurance, authentic identification of chicken meat is essential. In the present investigation, a chicken (Gallus gallus)-specific polymerase chain reaction (PCR) was developed for the unambiguous identification of chicken meat. The PCR assay employs pair of primers designed against chicken nuclear 5-aminolevulinate (ALA) synthase gene. Highly chicken-specific diagnostic amplicon of 288 bp was established upon PCR and was evident in all the nine breeds/strains of chicken species. Sensitivity of PCR in detecting chicken meat adulteration was established to be at 0.1 % in the foreign meat matrix, while limit of detection (LOD) of chicken DNA was 10 pg. Suitability of the developed chicken-specific PCR was validated and confirmed in raw, cooked/heat treated (60, 80, 100, and 121 °C), and micro-oven cooked meat samples. Possibility of cross-amplification of adulterating DNA was excluded by cross-checking the developed PCR assay with several animal and avian species. The PCR assay developed in this study is highly promising for applications involving circumstances that require authentic identification of chicken meat.  相似文献   

8.
膜芯片技术对牛、羊、牦牛、驴肉源食品的掺伪鉴别   总被引:1,自引:0,他引:1  
采用膜芯片技术,通过对牛、羊、驴、牦牛、鸡、鸭、兔、貂、狐、鼠、猪11 种目标物种的检测,实现对牛、羊、驴、牦牛物种的掺伪鉴别。结果表明:该方法具有良好的特异性和适用性,检测灵敏度和掺伪灵敏度均可达到0.1%,能快速、准确地同时鉴别牛、羊、驴、牦牛、鸡、鸭、兔、貂、狐、鼠、猪11 种动物源性成分,可满足肉类食品样品中对牛、羊、牦牛、驴等掺伪鉴别的检验需求。  相似文献   

9.
Three levels (0%, 1% and 2%) of a conjugated linoleic acid oil (CLA) were combined with two levels of monounsaturated fatty acids (MUFA) (low – 19% average and high – 39% average) for pig feeding (n = 48, eight animals per treatment). The composition and quality traits (fat content, cooking losses, lipid oxidation, fatty acid profile, volatile profile and sensory analysis) of cooked loin, as affected by dietary CLA, MUFA, and CLA × MUFA interaction were studied. CLA and CLA × MUFA did not affect the intramuscular fat content, cooking losses, lipid oxidation, volatile profile and sensory traits of cooked meat. Therefore, CLA could be supplemented to the pig diet without detriment of the measured quality traits of cooked meat, and regardless of the MUFA level of pig diets. Dietary CLA increased the content of SFA and decreased the level of MUFA of meat, and led to a CLA enrichment, regardless the MUFA level of pig diets, but the content of CLA isomers of fresh meat decreased after the cooking process.  相似文献   

10.
目的了解郑州市熟肉制品中产气荚膜梭菌(Clostridium perfringens)的污染状况,为熟肉制品储存过程中产气荚膜梭菌的安全控制提供技术支撑。方法按照GB 4789.13—2012《食品安全国家标准食品微生物学检验产气荚膜梭菌检验》中的方法分别对11种不同样品进行检测分析,结合VITEK鉴定法和分子生物学鉴定法进一步验证。结果 259份样品中,产气荚膜梭菌检出份数为38份,总检出率14.7%,不同样品的检出率范围为0.0%~33.3%,其中盐焗鸡样品检出率最高为33.3%(7/21),卤半片鸭和卤鸡肝样品未检出。烧鸡、烤鸡和卤鸡腿样品的产气荚膜梭菌菌落总数均超过5.0log10CFU/g,其他样品的菌落总数均在4log_(10)~5log_(10) CFU/g之间。结论郑州市熟肉制品中的产气荚膜梭菌污染现象较严重,烧鸡、烤鸡和卤鸡腿的菌落总数较高,有引起食物中毒的可能。  相似文献   

11.
Antioxidant capacity of oil soluble and water dispersible carnosic acid (CA) extracted from dried rosemary leaves using HPLC was evaluated at two different dosages (22.5 ppm vs 130 ppm) in raw and cooked ground buffalo meat patties and chicken patties. Irrespective of total phenolic content, CA extracts reduced (p < 0.05) the thiobarbituric acid reactive substances (TBARS) by 39%–47% and 37%–40% in cooked buffalo meat and chicken patties at lower dosage (22.5 ppm) relative to control samples. However, at higher dosage (130 ppm) the TBARS values were reduced (p < 0.05) by 86%–96% and 78%–87% in cooked buffalo meat and chicken patties compared to controls. The CA extracts were also effective in inhibiting (p < 0.05) peroxide value and free fatty acids in cooked buffalo meat and chicken patties. The CA extracts when used at higher dosage, were also effective in stabilizing raw buffalo meat color.  相似文献   

12.
One of the most convenient methods for the identification of animal species in processed meat products is the examination of DNA sequences. Real-time polymerase chain reaction (qPCR) techniques are particularly suitable because even small fragments of DNA formed during heat processing of the meat can be amplified and identified. A real-time PCR method has been developed and evaluated for the identification of processed meat products. In test mixtures containing beef, pork, horse, mutton, chicken and turkey, it was possible to identify these species down to a level of 0.05%. By adjusting the number of cycles, it was possible to detect levels as low as 0.01% of these species. Cross-reactivity between these species was not found, except for pure horsemeat (250 ng DNA) in the assay for turkey meat. Cross-reactivity of deer, roe, ostrich, kangaroo, goat, domestic duck, mallard, goose, pigeon, guinea fowl, quail and pheasant was also investigated and it was found that amounts as high as 250 ng DNA of these species in the reaction vial did not result in (false) positive signals except for amounts higher than 125 ng deer DNA and higher than 50 ng pigeon DNA in the determination of chicken and beef, respectively. More than 150 meat samples were examined using DNA hybridization and real-time PCR. A comparison of the results showed a better performance of the real-time procedure compared to DNA hybridization.  相似文献   

13.
目的 探讨不同核酸提取方法以及蒸、煮、烤烹饪方式制作的混合熟肉制品的多重荧光定量PCR检测结果之间的差异。方法 用3种不同的提取方法:抽提法、离心柱法及磁珠法,提取经过蒸、煮、烤烹饪方式制作的牛、鸡、猪、鸭混合样品的DNA,通过对不同方法提取DNA的质量及提取DNA用于多重荧光PCR检测的效果方面进行比较。结果 三种方法提取DNA的浓度及纯度无明显差别,磁珠法提取的混合样品DNA进行多重实时荧光PCR检测的Ct值最小,扩增效果最佳。结论 该研究中磁珠法提取熟肉制品DNA的检测效果更为理想。  相似文献   

14.
Species identification in meat products using real-time PCR.   总被引:3,自引:0,他引:3  
One of the most convenient methods for the identification of animal species in processed meat products is the examination of DNA sequences. Real-time polymerase chain reaction (qPCR) techniques are particularly suitable because even small fragments of DNA formed during heat processing of the meat can be amplified and identified. A real-time PCR method has been developed and evaluated for the identification of processed meat products. In test mixtures containing beef, pork, horse, mutton, chicken and turkey, it was possible to identify these species down to a level of 0.05%. By adjusting the number of cycles, it was possible to detect levels as low as 0.01% of these species. Cross-reactivity between these species was not found, except for pure horsemeat (250 ng DNA) in the assay for turkey meat. Cross-reactivity of deer, roe, ostrich, kangaroo, goat, domestic duck, mallard, goose, pigeon, guinea fowl, quail and pheasant was also investigated and it was found that amounts as high as 250 ng DNA of these species in the reaction vial did not result in (false) positive signals except for amounts higher than 125 ng deer DNA and higher than 50 ng pigeon DNA in the determination of chicken and beef, respectively. More than 150 meat samples were examined using DNA hybridization and real-time PCR. A comparison of the results showed a better performance of the real-time procedure compared to DNA hybridization.  相似文献   

15.
One of the most convenient methods for the identification of animal species in processed meat products is the examination of DNA sequences. Real-time polymerase chain reaction (qPCR) techniques are particularly suitable because even small fragments of DNA formed during heat processing of the meat can be amplified and identified. A real-time PCR method has been developed and evaluated for the identification of processed meat products. In test mixtures containing beef, pork, horse, mutton, chicken and turkey, it was possible to identify these species down to a level of 0.05%. By adjusting the number of cycles, it was possible to detect levels as low as 0.01% of these species. Cross-reactivity between these species was not found, except for pure horsemeat (250 ng DNA) in the assay for turkey meat. Cross-reactivity of deer, roe, ostrich, kangaroo, goat, domestic duck, mallard, goose, pigeon, guinea fowl, quail and pheasant was also investigated and it was found that amounts as high as 250 ng DNA of these species in the reaction vial did not result in (false) positive signals except for amounts higher than 125 ng deer DNA and higher than 50 ng pigeon DNA in the determination of chicken and beef, respectively. More than 150 meat samples were examined using DNA hybridization and real-time PCR. A comparison of the results showed a better performance of the real-time procedure compared to DNA hybridization.  相似文献   

16.
A species-specific duplex polymerase chain reaction (PCR) assay was developed for the simultaneous detection of pork and poultry meat species using the mitochondrial cytb and 12S rRNA as target genes for pork and poultry, respectively. By the amplification of binary reference meat mixtures, a linear normalised calibration curve was obtained using the fluorescence intensities of PCR products for pork (149 bp) and poultry (183 bp) species. The proposed method allowed the quantification of pork meat addition to poultry meat in the range of 1–75%, with a sensitivity of 0.1%. The in-house validation using samples with known amounts of pork meat (1.0%, 2.5%, 7.5%, 20.0% and 40%) evidenced a high reproducibility of the methodology (coefficient of variation from 4.1% to 7.6%). The successful application of the duplex PCR was also demonstrated by the high correlation (R2 = 0.99) obtained from regression analysis between the predicted and the actual values of pork meat addition in blind meat mixtures. The suggested methodology presents a low cost, fast, easy and reliable alternative to estimate the level of poultry meat adulteration by the addition of pork meat.  相似文献   

17.
为实现肉及肉制品掺假快速鉴别,分别以猪、牛线粒体DNA的COXⅠ,绵羊、山羊、狗、狐狸、貉线粒体DNA的16S rRNA及鸡、鸭线粒体DNA的12S rRNA基因为靶位点,设计扩增产物熔解温度(T_m值)具有显著性差异的特异性引物,建立一种用于快速鉴别肉或肉制品中猪、牛、绵羊、山羊、鸡、鸭、狗、狐、貉9种源性成分的5重实时荧光聚合酶链式反应熔解曲线分析方法,通过特异性、灵敏度及市售样品的检测,对该方法进行检验和评价。结果表明:方法具有良好的特异性及灵敏度,单物种DNA检出限为0.001~1 ng,多物种混合DNA检出限均为0.1 ng,通过市售样品检测表明该方法可用于实际样品(包括生鲜样品和熟制样品)掺假的快速鉴别。  相似文献   

18.
Meat species identification in food has gained increasing interest in recent years due to public health, economic and legal concerns. Following the consumer trend towards high quality products, game meat has earned much attention. The aim of the present work was to develop a DNA-based technique able to identify hare meat. Mitochondrial cytochrome b gene was used to design species-specific primers for hare detection. The new primers proved to be highly specific to Lepus species, allowing the detection of 0.01% of hare meat in pork meat by polymerase chain reaction (PCR). A real-time PCR assay with the new intercalating EvaGreen dye was further proposed as a specific and fast tool for hare identification with increased sensitivity (1 pg) compared to end-point PCR (10 pg). It can be concluded that the proposed new primers can be used by both species-specific end-point PCR or real-time PCR to accurately authenticate hare meat.  相似文献   

19.
The aim was to search for proteins differentiating the six species (cattle, pig, chicken, turkey, duck and goose) and relatively stable during the meat aging and only slightly degraded in ready-made products. The two-dimensional electrophoresis was used for analysis of the protein profiles from raw meat and frankfurters and sausages (15 products). The observed species-specific differences in protein expression in raw meat were retained in processed products after finishing the entire technological process. Regulatory proteins, metabolic enzymes, some myofibrillar and blood plasma proteins were identified, which were characterised by the electrophoretic mobility specific to the given species. Large differences in the primary structure were observed in serum albumin, apolipoprotein B, HSP27, H-FABP, ATP synthase, cytochrome bc-1 subunit 1 and alpha-ETF. Some of these proteins have potential to be used as markers in authentication of meat products.  相似文献   

20.
了解苏州地区肉及其制品的掺假情况,通过对肉类种源与标签明示肉源进行比对,鉴别摻假食品,为加强食品标签管理提供依据。方法 运用自建的动物源性食品种源判定Taqman实时荧光PCR检测体系对苏州地区的肉及其制品进行种源判定,与标签明示肉源进行比对,鉴别摻假食品。结果 本次调查共检验涉及32个生产单位的90份样品,总不符合率为25.6%(23/90)。检测的44份牛肉及其制品中有12份与标签不符,8份用猪肉部分替代牛肉,1份以鸭肉部分代替牛肉进行销售;此外有3份不含有牛肉成分,存在猪、鸡、鸭源性肉类之外的肉类成分。共检测羊肉及其制品16份,有2份用鸭肉代替羊肉出售,3份羊肉样品中掺入了部分猪成分,其中1份样品还存在单个样品掺杂两种外源肉类的现象(猪源性和鸭源性)。检测猪肉及其制品19份,其中2份样品含有标签未注明的鸡肉成分。在所检测的11份混合肉类样品中有4份成分与标签不符,主要是以廉价的鸡肉取代/部分取代相对高价的牛肉和猪肉。结论 肉制品掺假情况明显,用猪肉、鸭肉部分代替牛肉和羊肉仍是主要的掺假手段,牛肉掺假样品主要是熟制牛肉制品,而火锅食用羊肉卷样品则是羊肉掺假高危品,开展肉制品摻假检测对规范肉制品市场具有积极意义。此外,3份未知种源成分的牛肉样品提示在现有检测基础上还需扩大检测范围,防患于未然。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号