共查询到17条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
假定 Cu-Zn 合金马氏体相变中新、旧原子存在 Bain 机制所示的对应关系,则沿用已知的热力学数据,以 BWG 模型处理 Cu-Zn 合金的有序问题,推导出相变驱动力ΔG~(β′→α′)的普遍表达式。以该式计算了Cu-Zn 合金马氏体相变的平衡温度 T(?)及马氏体相变点 M_s,其中 M_s 与实验结果很好吻合。计算证明,母相有序化是 Cu-Zn 合金发生热弹性马氏体相变的必要条件,有序度对 M_s 有显著的影响。 相似文献
5.
Cu—Al 合金马氏体相变热力学 总被引:1,自引:0,他引:1
依据规则溶液模型,在充分利用 Cu-Al 系相图的基础上,导得 Cu-Al 合金的一些热力学参量。应用统计模型处理了 Cu-Al 合金中涉及马氏体相变的体心立方及面心立方两种结构的有序相变,直接从理论上计算了不同成分 Cu-Al 合金α和β相的平衡温度 T~*,有序α′与β′相的平衡温度 T_0,以及马氏体相变点 M_s,其中 M_s 与实验值非常吻合。计算还表明 Cu-Al 系中 T_0比 T_0~*更高。 相似文献
6.
7.
发展了新的估算 Cu-Zn-Al 合金热弹性马氏体相变临界驱动力方法。由测量合金的杨氏模量及估算马氏体内的储存能量(层错能),所得的临界驱动力数值与量热法测得热效应后换算的近似值非常接近。 相似文献
8.
9.
采用高强度同步辐射白光束x射线衍衬貌相术原位实时研究了单晶Cu-Zn-Al形状记忆合金的马氏体相变,跟踪了马氏体变体随温度循环的演变过程。结果表明,马氏体变体首先在非完整晶区形核;由于马氏体变体之间及马氏体变体与母相之间的相互作用,使某些区域造成高度紊乱,经一次循环后,在这些区域留下了新的晶体缺陷,但是亚晶结构与原始状态一致。 相似文献
10.
11.
12.
13.
14.
Cu-Zn 合金贝氏体相变热力学 总被引:1,自引:0,他引:1
对 Cu-40at.-%Zn 合金贝氏体相变温度范围内各种可能相变的驱动力进行了计算。结果表明,由于在这温度范围内存在β→β′有序相变,因而相变驱动力ΔG~(β′→α′)及ΔG~(β′→β_1′+α)随温度下降反而增大,且ΔG~(β′→α′)>0,ΔG~(β′→β_1′+α)<0;而且各成分合金β′及α′两相平衡温度 T_0,远低于 B_s 实验值,所以贝氏体相变只能按β′→β_1′+α扩散型相变进行。 相似文献
15.
用 Fe-C 合金的规则间隙溶体模型在新的贝氏体转变模式的基础上对 Fe-C 合金贝氏体转变初期进行了热力学分析。新的模式中,贝氏体铁素体以非平衡但不完全过饱和的碳量经由切变机制形成,碳的再分配先于贝氏体铁素体的形成。结果表明,在完善奥氏体中形成一定尺寸的贫碳区,其引起的能量升高与马氏体相变的形核垒有相同的数量级;在借助于体系的内部缺陷以及非平衡体系结构驰豫的情况下是可以实现的过程;在贝氏体铁素体碳量为非平衡但不完全过饱和的情况下,贝氏体转变的驱动力足以推动切变相变。 相似文献
16.
17.
This study is part of a wider research project on the cyclic properties, energy cumulation and fatigue life of metastable austenitic steels undergoing a martensitic transformation induced by plastic straining.
This paper considers the representation of the σ–ε hysteresis loop over a wide range of strain. A novel, power-function model of cyclic elastic–plastic material behaviour was used. The model allows the occurrence of a cyclic yield point and the characteristic inflection point of the CSS curve, which separates the single-phase (austenite) region from the two-phase (austenite + martensite) one. The plastic strain corresponding to the inflection point is assumed to be a material constant and is termed the martensitic transformation cyclic limit ε1 . The generalization of the model made possible the representation of cyclic softening of the two-phase material.
In addition, the study chose a measurement technique that assisted the estimation of the cyclic plastic strain (ε1 ) inducing the martensitic transformation. The crossed magnetomechanical (Villari) effect was shown to be applicable in detecting the nucleation and estimating the increase of the α'-martensite content.
The identification was performed making use of experimental results obtained from an AISI 304 high nickel content steel. The tests were performed under both increasing and constant plastic strain amplitude. The measured quantities were: total strain εt elastic strain εe , plastic strain εp , stress σ and hysteresis loop area ΔW. The results justify the assumed model. 相似文献
This paper considers the representation of the σ–ε hysteresis loop over a wide range of strain. A novel, power-function model of cyclic elastic–plastic material behaviour was used. The model allows the occurrence of a cyclic yield point and the characteristic inflection point of the CSS curve, which separates the single-phase (austenite) region from the two-phase (austenite + martensite) one. The plastic strain corresponding to the inflection point is assumed to be a material constant and is termed the martensitic transformation cyclic limit ε1 . The generalization of the model made possible the representation of cyclic softening of the two-phase material.
In addition, the study chose a measurement technique that assisted the estimation of the cyclic plastic strain (ε1 ) inducing the martensitic transformation. The crossed magnetomechanical (Villari) effect was shown to be applicable in detecting the nucleation and estimating the increase of the α'-martensite content.
The identification was performed making use of experimental results obtained from an AISI 304 high nickel content steel. The tests were performed under both increasing and constant plastic strain amplitude. The measured quantities were: total strain εt elastic strain εe , plastic strain εp , stress σ and hysteresis loop area ΔW. The results justify the assumed model. 相似文献