首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This paper describes a 32-bank 1 Gb DRAM achieving 1 Gbyte/s (500 Mb/s/DQ pin) data bandwidth and the access time from RAS of 31 ns at V cc=2.0 V and 25°C. The chip employs (1) a merged multibank architecture to minimize die area; (2) an extended small swing read operation and a single I/O line driving write scheme to reduce power consumption; (3) a self-strobing I/O schemes to achieve high bandwidth with low power dissipation; and (4) a block redundancy scheme with increased flexibility. The nonstitched chip with an area of 652 mm 2 has been fabricated using 0.16 μm four-poly, four-metal CMOS process technology  相似文献   

2.
A 64-Mb dynamic RAM (DRAM) has been developed with a meshed power line (MPL) and a quasi-distributed sense-amplifier driver (qDSAD) scheme. It realizes high speed, tRAS=50 ns (typical) at Vcc=3.3 V, and 16-b input/output (I/O). This MPL+qDSAD scheme can reduce sensing delay caused by the metal layer resistance. Furthermore, to suppress crosstalk noise, a VSS shield peripheral layout scheme has been introduced, which also widens power line widths. This 64-Mb DRAM was fabricated with 0.4-μm CMOS technology using KrF excimer laser lithography. A newly developed memory cell structure, the tunnel-shaped stacked-capacitor cell (TSSC), was adapted to this 64-Mb DRAM  相似文献   

3.
A 29-ns (RAS access time), 64-Mb DRAM with hierarchical array architecture has been developed. For consistent high yields and high speed, a CMOS segment driver circuit is used as a hierarchical word line scheme. To achieve high speed, precharge signal (PC) drivers for equalizing the bit lines pairs, and shared sense amplifier signal (SHR) drivers are distributed in the array. To enhance sense amplifiers speed in low array voltage, an over driven sense amplifier is adopted. A hierarchical I/O scheme with semidirect sensing switch is introduced for high speed data transfer in the I/O paths. By combining these proposed circuit techniques and 0.25-μm CMOS process technologies with phase-shift optical lithography, an experimental 64-Mb DRAM has been designed and fabricated. The memory cell size is 0.71×1.20 μm 2, and the chip size is 15.91×9.06 mm2. A typical access time under 3.3 V power supply voltage is 29 ns  相似文献   

4.
A modular architecture for a DRAM-integrated, multimedia chip with a data transfer rate of 6 to 12 Gbyte/s is proposed. The architecture offers the design flexibility in terms of both DRAM capacity and the logic-memory interface for use in a wide variety of applications. A DRAM macro built from cascadable DRAM bank modules having a 256-kb memory capacity and 128-b I/Os provides flexibility and reconfigurability of DRAM capacity and a high data transfer rate with an area of 6.4 mm2 /Mb. A data transfer circuit (called the “reconfigurable data I/O attachment”), which is attached to the I/O lines of the DRAM macro, provides a flexible logic-memory interface by changing the data-transfer routes between the DRAM macro and logic circuits in real time. A 6.4-Gbyte/s test chip (called the “media chip”) for three-dimensional computer graphics was fabricated to test the proposed design methodology. It integrates an 8-Mb DRAM and four pixel processors on an 8.35×14.6-mm chip by using a 0.4-μm CMOS design rule  相似文献   

5.
A 2.5-V, 72-Mbit DRAM based on packet protocol has been developed using (1) a rotated hierarchical I/O architecture to reduce power noise and to minimize the chip-size penalty associated with an 8-bit prefetch architecture implemented with 16 internal banks and 144 I/O lines, (2) a delay-locked-loop circuit using a high-speed and small-swing differential clock to achieve the peak bandwidth of 2.0 GByte/s in a single chip with low noise sensitivity, and (3) a flexible column redundancy scheme to efficiently increase redundancy coverage using a shifted I/O line scheme for multibank architecture  相似文献   

6.
This paper describes a DRAM macro design from which 2112 configurations up to 32 Mb can be synthesized using a memory generator. The memory generator automatically creates the layout of a DRAM macro in accordance with specification inputs such as memory capacity, address count, bank count, and I/O bits count. An expandable floor layout scheme achieves the macro size comparable to that of handicraft-designed DRAM. The memory generator can customize a configurable redundancy scheme for various macro configurations. Unified testing circuits make it possible to test DRAM macros with more than 500 interface pins in a direct-memory-access mode with 33 test pads. Up to four macros on the same chip can be tested with them. Test chips with 4-Mb DRAM and with 20-Mb DRAM fabricated with 0.35-μm technology showed 150-MHz operation  相似文献   

7.
Circuit techniques for battery-operated DRAMs which cover supply voltages from 1.5 to 3.6 V (universal Vcc), as well as their applications to an experimental 64-Mb DRAM, are presented. The universal-Vcc DRAM concept features a low-voltage (1.5 V) DRAM core and an on-chip power supply unit optimized for the operation of the DRAM. A circuit technique for oxide-stress relaxation is proposed to improve high-voltage sustaining characteristics while only scaled MOSFETs are used in the entire chip. This technique increases sustaining voltage by about 1.5 V compared with conventional circuits and allows scaled MOSFETs to be used for the circuits, which can be operated from an external Vcc of up to 4 V. A two-way power supply scheme is proposed to suppress the internal voltage fluctuation within 10% when the DRAM is operated from external power supply voltages ranging from 1.5 to 3.6 V. An experimental 1.5-3.6-V 64-Mb DRAM is designed based on these techniques and fabricated by using 0.3-μm electron-beam lithography. An almost constant access time of 70 ns is obtained. This indicates that battery operation is a promising target for future DRAMs  相似文献   

8.
This paper describes DRAM array driving techniques and the parameter scaling techniques for low voltage operation using the boosted sense ground (BSG) scheme and further improved methods. Temperature compensation and adjustable internal voltage levels maintain a small subthreshold leakage current for a memory cell transistor (MC-Tr), and a distributed BSG (DBSG) scheme and a column decoded sensing (CDS) scheme achieve the effective scaling. These schemes can set the DRAM array free from the leakage current problem and the influence of temperature variations. Therefore, parameters for the MC-Tr, threshold voltage (V th), and the boosted voltage for the gate bias can be scaled down, and it is possible to determine the Vth of the MC-Tr simply (0.45 V at K=0.4) for the satisfaction of the small leakage current, for high speed and stable operation, and for high reliability (VPP is below 2 VCC). They are applicable to subquarter micron DRAM's of 256 Mb and more  相似文献   

9.
A distributed-column-control architecture is proposed to reduce the burst-mode cycle time of large-capacity DRAMs. It features independent operation of the I/O block and subarrays, eliminating the wiring delay in the internal buses from the longest pipeline stage. The timing difference between the I/O block and the subarrays is compensated for by event-driven circuits. This architecture also eliminates the timing margin between the activation of column selection lines, reducing the cycle time by 25%. To evaluate this architecture, an experimental synchronously operating 1-Gb DRAM was designed and fabricated using a 0.16-μm CMOS process. It operates with a 22O-MHz clock and a 1.5-V power supply  相似文献   

10.
A time-shared offset-canceling sensing scheme, a defective word-line Hi-Z standby scheme, and a flexible multimacro architecture have been developed for 1-Gb DRAM. These circuit technologies have been applied to a 1-Gb DRAM for file applications employing 0.25 μm CMOS process technology, a diagonal bit-line cell, and a two-stage pipeline circuit technique. In this DRAM, a 30% chip size reduction and a 400-MB/s data transfer rate have been achieved. A 100% improvement in yield has been estimated by Monte-Carlo simulation. The 1-Gb DRAM die size is 936 mm2. The cell size is 0.54 μm2. The operating current is 58 mA at 2 V and 100 MHz  相似文献   

11.
A 256-Mb DRAM with a multidivided array structure has been developed and fabricated with 0.25-μm CMOS technology. It features 30-ns access time, 16-b I/Os, and a 35-mA operating current at a 60-ns cycle time. Three key circuit technologies were used in its design: a partial cell array activation scheme for reducing power-line voltage bounce and operating current, a selective pull-up data-line architecture to increase I/O width and reduce power dissipation, and a time-sharing refresh scheme to maintain the conventional refresh period without reducing operational margin. Memory cell size was 0.72 μm2. Use of the trench isolated cell transistor and the HSG cylindrical stacked capacitor cells helped reduce chip size to 333 mm2  相似文献   

12.
This paper describes several new circuit design techniques for low VCC regions: 1) a charge-amplifying boosted sensing (CABS) scheme which amplifies the sensing voltage difference (ΔVBL ) as well as the VGS margin by boosting the sensing node voltage with a voltage dependent boosting capacitor and 2) an I/O current sense amplifier with a high gain using a cross-coupled current mirror control scheme and reduced temperature sensitivity using a simple temperature-compensation scheme. An experimental 16 Mb DRAM chip with the 0.18-μm twin-well, triple-metal CMOS process has been fabricated, and an access time from the row address strobe (tRAC) of 28 ns at Vcc=1.5 V and T=25°C has been obtained  相似文献   

13.
Three circuit techniques for a 1.5 V, 512 Mb graphic DDR4 (GDDR4) SDRAM using a 90-nm DRAM process have been developed. First, a dual-clock system increases clocking accuracy and expands internal timing margins for harmonious core operation regardless of external clock frequency. Second, a four-phase data input strobe scheme helps to increase the input data valid window. Third, a fully analog delay-locked loop which provides a stable I/O clock and has 31.67 ps peak-to-peak jitter characteristics is designed. On the basis of these circuit techniques, the data rate is 3.2 Gbps/pin, which corresponds to 12.8 Gbps in times32 GDDR4-based I/O. Also, a multidivided architecture consisting of four independent 128 Mb core arrays is designed to reduce power line and output noise.  相似文献   

14.
Presents a new DRAM array architecture for scaled DRAMs. This scheme suppresses the stress bias for memory cell transistors and enables memory cell transistor scaling. In this scheme, the data "1" and data "0" are written to the memory cell in different timing. First, for all selected cells, data "1" is written by boosting wordline (WL) voltage. Second, after pulling down WL voltage to a lowered value, data "0" is written only for data "0" cells. This scheme reduces stress bias for the cell transistor to half of that of the conventional operation. The time loss for data "1" write is eliminated by parallel processing of data "1" write and sense amplifier activation. This scheme realizes fast cycle time of 50 ns. By adopting the proposed scheme, the gate-oxide thickness of the cell transistor is reduced from 5.5 to 3 nm, and the memory cell size is reduced to 87% in 0.13-μm DRAM generation. Moreover, the application of the oxide-stress relaxation technique to all row-path circuits as well as the proposed scheme enables high-performance DRAM with only a thin gate-oxide transistor  相似文献   

15.
A dual-operating-voltage scheme (5 V for peripheral circuits and 3.3 V for the memory array) is shown to be the best approach for a single 5-V 16-Mb DRAM (dynamic random-access memory). This is because the conventional scaling rule cannot apply to DRAM design due to the inherent DRAM word-line boosting feature. A novel internal voltage generator to realize this approach is presented. Its features are the switching of two reference voltages, a driver using a PMOS-load differential amplifier, and the word-line boost based on the regulated voltage, which can ensure a wider memory margin than conventional circuits. This approach is applied to an experimental 16-Mb DRAM. A 0.5% supply-voltage dependency and 30-ns recovery time are achieved  相似文献   

16.
This paper proposes a 0.5 V/100 MHz/sub-5 mW-operated 1-Mbit SRAM cell architecture which uses a boosted and offset-grounded data storage (BOGS) scheme. The key target of BOGS is to minimize the charge amount supplied from the embedded charge pump circuits, which are required to boost the effective gate to source voltage (V0=VGS-VT) up to 0.8 V necessary to achieve 100 MHz operation even at 0.5 V single power supply. Thus, the key low-power strategy of BOGS is “putting the right (higher efficiency) boosted power-supply from charge pump circuit into the right position (less power consumed transistor) in a SRAM cell.” This paper is focused on why BOGS can realize a greater savings of the charge amount supplied from the boosted power-line and can reduce the power dissipation to ⩽1/30.4 and ⩽1/3.9 compared to the previously reported negative source-line drive (NSD) scheme and negative word-line drive (NWD) scheme, respectively, while achieving a 0.5 V/100 MHz operation  相似文献   

17.
We implemented 72-Mb direct Rambus DRAM with new memory architecture suitable for multibank. There are two novel schemes: flexible mapping redundancy (FMR) technique and additional refresh scheme. This paper shows that multibank reduces redundancy area efficiency. But with the FMR technique, this 16-bank DRAM realizes the same area efficiency as a single-bank DRAM. In other words, FMR reduces chip area by 13%. This paper also describes that additional refresh scheme reduces data retention power to 1/4. Its area efficiency is about four times better than that of the conventional redundancy approach  相似文献   

18.
Approaches to extra low voltage DRAM operation by SOI-DRAM   总被引:1,自引:0,他引:1  
The newly designed scheme for a low-voltage 16 MDRAM/SOI has been successfully realized and the functional DRAM operation has been obtained at very low supply voltage below 1 V. The key process and circuit technologies for low-voltage/high-speed SOI-DRAM will be described here. The extra low voltage DRAM technologies are composed of the modified MESA isolation without parasitic MOS operation, the dual gate SOI-MOSFETs with tied or floating bodies optimized for DRAM specific circuits, the conventional stacked capacitor with increased capacitance by thinner dielectric film, and the other bulk-Si compatible DRAM structure. Moreover, a body bias control technique was applied for body-tied MOSFETs to realize high performance even at low voltage. Integrating the above technologies in the newly designed 0.5-μm 16 MDRAM, high-speed DRAM operation of less than 50 ns has been obtained at low supply voltage of 1 V  相似文献   

19.
A high-density dual-port DRAM architecture is proposed. It realizes a two-transistor/one-capacitor (2Tr-1C) dual-port memory cell array with immunity against the array noise caused by the dual-port operation. This architecture, called a truly dual-port (TDP) DRAM, adopts the previously proposed divided/shared bit-line (DSB) sensing scheme in a dual-port 2Tr-1C DRAM array. A 2Tr-1C dual-port memory cell array with folded bit-line sensing operation, which does not increase the number of bit lines of the 1Tr-1C folded bit-line memory array, is realized, thus reducing the memory cell size. This architecture offers a solution to the fundamental limitations in the 2Tr-1C dual-port memory cell, and it is easily applicable to dual-port memory cores in ASIC environments. An analysis of the memory array noise in various dual-port architectures shows a significant improvement with this architecture. Applications to the complete pipelining operation of a DRAM array and a refresh-free DRAM core are also discussed  相似文献   

20.
A new dynamic RAM (DRAM) signal sensing principle, a divided/shared bit-line (DSB) sensing scheme, is proposed. This sensing scheme provides folded bit-line sensing operation in a crosspoint-type memory cell array. The DSB scheme offers a high-density DRAM memory core with the common-mode array noise eliminated. A bit-line architecture based on this new sensing principle and its operation are demonstrated. A divided/pausing bit-line sensing (DIPS) scheme, which is an application of this DSB principle to the conventional folded bit-line type of memory cell arrangement, is also proposed. The DIPS architecture achieves complete pausing states for alternate bit lines throughout the active period. These alternate pausing bit lines shield the inter-bit-line coupling noise between active bit lines. Here the inter-bit-line coupling noise is eliminated by a slight architectural change to the conventional folded bit-line memory cell array. These new memory core design alternatives provide high-density DRAM memory cores suitable for the 64-Mb level and beyond. with the memory array noise reduced significantly  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号