首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In our efforts to characterize and improve the performance of an existing steelmaking process or in our quest to generate useful knowledge as a basis for the development of new manufacturing routes, measurements and models should be considered as two interdependent requirements. Without measurements, our models are incomplete and unsatisfactory. Without models, we fail to realize, or perhaps even comprehend, the potential significance of our measurements. Sometimes in our enthusiasm, we construct sophisticated elegant models and forget the reality of the actual manufacturing process. In this computer age, we need to remember again the importance of observations and accurate measurements. In addition, as engineers and applied scientists, we have an obligation and a responsibility to facilitate the transfer of new knowledge into the realm of operating practice. During this process of generation, evaluation, and communication of new knowledge, the knowledge exchange step is perhaps the most difficult. In this context, the preeminent aim of collaborative activities between our educational institutions, industrial organizations, government funding agencies, and professional societies is to ensure the availability of high-quality people who not only understand the fundamental aspects and practical implications of their discipline, but also are fully equipped with the essential skills of communication that will enable them to participate throughout their career in this most challenging and satisfying activity, the science and technology of steelmaking. The Brimacombe Memorial Lectureship was established in 1999 by the Process Technology Division of the Iron & Steel Society to honor Dr. J. Keith Brimacombe’s outstanding accomplishments in the area of process metallurgy, his dedication to the steel industry, and his profound effect on people in the industry; and also to acquaint members, students, and engineers with the many exciting opportunities that exist in the area of process metallurgy and to inspire them to pursue careers in this field. Professor McLean obtained his degrees in Applied Chemistry and Metallurgy from the University of Glasgow and the Royal College of Science and Technology, now the University of Strathcylde. After 5 years with the Metallurgy and Materials Science Department at McMaster University in the mid-1960s, he moved to the Graham Research Laboratory of Jones and Laughlin Steel Corporation in Pittsburgh. He returned to Canada in 1970 and joined the Department of Metallurgy and Materials Science at the University of Toronto where he served as the American Iron and Steel Institute Distinguished Professor from 1982 through 1986 and as Department Chair from 1992 through 1997. He is an Adjunct Professor at Chiba Institute of Technology in Japan and holds the position of Invited Professor at Kyoto University. In 1985, he served as President of the Iron and Steel Society of AIME and in 1988 delivered the 65th Henry Marion Howe Memorial Lecture. He is an Honorary Member of AIME, the Iron & Steel Institute of Japan, and the Hungarian Mining & Metallurgical Society. He is a Fellow of the Royal Society of Canada and also several professional associations. He has received Honorary Doctorates from the University of Miskolc in Hungary and the University of Strathclyde in Scotland as well as awards from technical societies in Canada, the United States, the United Kingdom, and Japan for contributions to the science and technology of steel processing and for activities pertaining to metallurgical education. He has authored or co-authored about 300 publications and has served as a consultant to companies in North America and Europe and as a board member of several industrial organizations. He was appointed Professor Emeritus at the University of Toronto in 2002.  相似文献   

2.
This lecture honoring Keith Brimacombe looks over the history, current abilities, and future potential of mathematical models to improve understanding and to help solve practical problems in the continuous casting of steel. Early finite-difference models of solidification, which were pioneered by Keith Brimacombe and his students, form the basis for the online dynamic models used to control spray water flow in a modern slab caster. Computational thermal-stress models, also pioneered by Brimacombe, have led to improved understanding of mold distortion, crack formation, and other phenomena. This has enabled process improvements, such as optimized mold geometry and spray-cooling design. Today, sophisticated models such as transient and multiphase fluid-flow simulations rival water modeling in providing insights into flow-related defects. Heat-flow and stress models have also advanced to yield new insights. As computer power increases and improvements via empirical plant trials become more costly, models will likely play an increasing role in future developments of complex mature processes, such as continuous casting. The Brimacombe Memorial Lectureship was established in 1999 by the Process Technology Division of the Iron & Steel Society to honor Dr. J. Keith Brimacombe’s outstanding accomplishments in the area of process metallurgy, his dedication to the steel industry, and his profound effect on people in the industry; and also to acquaint members, students, and engineers with the many exciting opportunities that exist in the area of process metallurgy and to inspire them to pursue careers in this field. Brian G. Thomas is a professor of mechanical engineering at the University of Illinois and director of the Continuous Casting Consortium. He received his Bachelors of metallurgical engineering from McGill University in 1979 and Ph.D. in metallurgical engineering in 1985 from the University of British Columbia. In between, he worked in the Materials Research Department of Algoma Steel (Sault Ste. Marie, ON). His recent research efforts focus on the development and application of mathematical models of all aspects of the continuous casting of steel and related processes. Dr. Thomas has authored with co-workers over 150 technical publications on his research, which has been recognized with a Presidential Young Investigator Award from NSF, Outstanding Young Manufacturing Engineer Award from SME, Xerox Award for UIUC Faculty research, and more than ten best paper awards from AFS, AIME, ISS, TMS, CIM, and ASM International. He has participated in several short courses to transfer technology to industry, including the annual Brimacombe Continuous Casting Course.  相似文献   

3.
As in any process, the laws of nature are at work in the continuous casting of metals. Heat spills down temperature gradients under the watchful eye of Fourier, while molten metal moves in response to inertial and body forces governed by the Navier-Stokes equations. Tensile strains develop in the solidifying shell subject to changing cooling conditions, the constitutive behavior of the metal, compatibility, and the Prandtl-Reuss relations. Solutes segregate as thermodynamics compete with diffusion to create a heterogeneous solid from a homogeneous liquid. The challenge to the process engineer is to harness these laws to continuously cast a metal section that is free of cracks, has minimal macrosegregation, and has the desired shape. Confronted with the demands of production, cost containment, and an educationally challenged workforce, the obstacles are very real. One response to the challenge is to move knowledge to the shop floor, where wealth is created, through expert systems to educate the workforce and through artificial intelligence to make the continuous casting process “smart.” Harnessing knowledge for wealth creation, and profitability, is the real challenge. The Edward DeMille Campbell Memorial Lecture was established in 1926 as an annual lecture in memory of and in recognition of the outstanding scientific contributions to the metallurgical profession by a distinguished educator who was blind for all but two years of his professional life. It recognizes demonstrated ability in metallurgical science and engineering. Dr. J. Keith Brimacombe delivered the 1996 Edward DeMille Campbell Memorial Lecture at the ASM-TMS Meeting in Cincinnati, OH. The written lecture was nearly complete at the time of his untimely passing on December 16, 1997 and has been finished and submitted by his colleague, Professor I.V. Samarasekera. On October 1, 1997, J. Keith Brimacombe was appointed the first President and Chief Executive Officer of the Canada Foundation for Innovation. This enterprise, newly established by the Federal Government of Canada, was provided with one billion dollars of funding with the objective of strengthening the nation’s research infrastructure in universities and hospitals. Sadly, Dr. Brimacombe was able to serve only 3 months of his term and succumbed to a massive heart attack on December 16, 1997, at the age of 54. Dr. Brimacombe held the Alcan Chair in Materials Process Engineering, The Centre for Metallurgical Process Engineering at the University of British Columbia, prior to his appointment with the Canada Foundation for Innovation. He was born in Nova Scotia, raised in Alberta, and received his undergraduate education at UBC, obtaining a B.A.Sc. (Hons.) in 1966. With the support of a Commonwealth Fellowship, he traveled to England and studied under one of the great metallurgical thermochemists of this century, F.D. Richardson, F.R.S., at Imperial College of Science and Technology in the University of London, where he received a Ph.D. in 1970. Subsequently, he was awarded the D.Sc. (Eng.) in 1986 by the University of London and an Honorary Doctorate of Engineering degree in 1994 by the Colorado School of Mines. He returned to the University of British Columbia in 1970 to establish courses and a research program in metallurgical process engineering. He remained at UBC, achieving the rank of Professor in 1979, Stelco Professor of Process Metallurgy (a chair endowed by Stelco) in 1980, Stelco/NSERC Professor (a chair endowed by Stelco and NSERC) in 1985, and the Alcan Chair in 1992. One of the finest metallurgical engineers on the world stage in this century, Dr. Brimacombe pioneered the application of mathematical models and industrial and laboratory measurements, to shed light on complex metallurgical processes spanning both the ferrous and nonferrous industries during his 27 year career at the University of British Columbia. For his groundbreaking research, he earned the reputation of being one of the most innovative intellectual giants in the field, for which he earned global recognition. During his tenure at UBC, he built a large collaborative research group in metallurgical process engineering consisting of about 70 faculty, graduate students, research engineers, and technicians. Much of the research was conducted in close collaboration with Canadian companies such as Stelco, Hatch Associates, Algoma Steel, Western Canada Steel, Sidbec-Dosco, Ivaco, Cominco, Noranda, Inco, Alcan, Domtar, Canadian Liquid Air, and Liquid Carbonic. The thrust of the research was the development and improvement of metallurgical processes, such as continuous casting of steel, flash smelting of lead and copper converting, rotary kilns, and micro-structural engineering of steel and aluminum, and DC casting processes. This body of work led to 300 publications and nine patents as well as two books. In 1985, in cooperation with faculty colleagues, he founded the Centre for Metallurgical Process Engineering at UBC and was named its Director. The purpose of the Centre is to strengthen the interdisciplinary approach to metallurgical process research and to broaden the field of application to materials other than metals. For this body of research, he was awarded the B.C. Science and Engineering Gold Medal (1985) and the Ernest C. Manning Prize (1987) and, before that, the E.W.R. Steacie Memorial Fellowship (1979) from NSERC. He also received the following awards: TMS-AIME Charles Herty Award (1973 and 1987), AMS Marcus A. Grossmann Award (1976), TMS Extractive Metallurgy Science Award (1979, 1987, and 1989), ISS John Chipman Award (1979, 1985, and 1996), TMS Champion H. Mathewson Gold Medal (1980), ISS Robert Woolston Hunt Silver Medal (1980, 1983, and 1993), ASM Henry Marion Howe Medal (1980 and 1985), TMS Extractive Metallurgy Technology Award (1983 and 1991), the Williams Prize of the Metals Society (UK) (1983), the ISS Mechanical Working and Steel Processing Conference Meritorious Award (1986 and 1996), the ASM Canadian Council Lectureship (1986), and the CIM Metallurgical Society Alcan Award (1988). In 1981, he delivered the Arnold Markey Lecture to the Steel Bar Mill Association. In 1987, he was made a Distinguished Member of the Iron and Steel Society and a Fellow of the Royal Society of Canada. In 1988, he became a Fellow of the CIM and, in 1989, he delivered the TMS Extractive Metallurgy Lecture while being awarded Fellowship in TMS. Also in 1989, he was awarded the Izaak Walton Killam Prize for Engineering by the Canada Council, joined the Board of Directors of Sherritt Gordon Ltd., received the Bell Canada Corporate-Higher Education Award and was appointed an Officer of the Order of Canada. In 1990, he received the Meritorious Achievement Award of the Association of Professional Engineers of British Columbia and a UBC Killam Research Prize. In 1992, he was honored with the Commemorative Medal for the 125th Anniversary of Canadian Confederation and, in 1993, delivered the Howe Memorial Lecture of the Iron and Steel Society and became Fellow of the Canadian Academy of Engineering. In 1994, he presented the D.K.C. MacDonald Memorial Lecture; and in 1995, he was the Inland Steel Lecturer at Northwestern University and received the Ablett Prize of the Institute of Materials. In 1996, he delivered the ASM Edward DeMille Campbell Memorial Lecture and, in 1997, received the AIME Distinguished Service, and he was elected a Foreign Associate of the National Academy of Engineering. In June 1997, he received Canada’s highest scientific honor, the Canada Gold Medal in Science and Engineering from the Natural Sciences and Engineering Research Council of Canada. In 1998, Dr. Brimacombe was posthumously awarded the Benjamin Fairless Award by the AIME and the Inco Medal by the CIM at their centennlal celebration. Beyond the quest to generate knowledge and train young people, he was driven by the desire to see the fruits of his research implemented in industry. Not satisfied that publications in peer-reviewed journals are an effective means of reaching out to the shop floor, where knowledge implementation creates wealth, he worked tirelessly at the University-Industry interface to make the transfer of knowledge to industry a reality. A gifted speaker, he was renowned for his ability to translate complex research results to changes that are required to the process for improved quality and/or productivity. Thus, he was sought after by the global metallurgical industry and presented over 50 courses in companies in every continent. A course on continuous casting of steel offered annually in Vancouver, under his directorship, attracted participants from around the world. He seized the opportunities provided by the revolution in computer technology to help further the transfer of knowledge, and since the early 1980s drove the development of user-friendly mathematical models as a means of transferring research results to industry. Brimacombe was also instrumental in developing “smart” systems for the transfer of knowledge and spearheaded the development of an expert system for diagnosing defects in steel billets, which is being marketed commercially. A recent project involving Canadian companies is the development of a “Smart Process,” in which knowledge is made to work in the process through the use of an on-line expert system and sensors. He gave unreservedly of his time to professional societies, which are a vehicle for knowledge transfer and professional development of materials engineers. He was the only professional who was President of the three major societies serving materials engineers in North America: TMS-CIM in Canada in 1985, TMS-AIME in 1993, and ISS-AIME in 1995. His enthusiasm for professional societies was infectious and has led to the initiation of a very dynamic student chapter at UBC. He served on the Killam Research Fellowships Committee of the Canada Council from 1982 to 1985, where he initiated the Killam Prize in Engineering and worked on other committees of the Canadian Council of Professional Engineers, the Science Council of British Columbia, and the Canadian Steel Industry Research Association. He served on the Boards of the ISS and TMS in the United States. He served on numerous committees in these societies, including Joint Commission and Board of Review of Metallurgical Transactions, Book Publishing Committee, Awards Committee, Extractive Metallurgy Sub-committee, Nominating Committee, and Long Range Planning Committee. In 1989, he assumed responsibilities as Founding Chairman of the TMS Extraction and Processing Division, in 1993–4 was TMS President, and in 1994–5 was Founding President of the TMS Foundation. In 1990, he was named as an Eminent Scientist to the Board of Directors of the Ontario Centre for Materials Research. In 1995, he was Chairman of the Science Policy Committee of the Royal Society of Canada and was a member of the National Materials Advisory Board (united States). In 1996, he was elected Vice President of the Academy of Science of the Royal Society of Canada and was appointed to the Board of the United Engineering Trust. He served on the Board of Trustees of the AIME since 1993; had he lived, he would have become President of the AIME in 1999.  相似文献   

4.
The challenge of quality in continuous casting processes   总被引:2,自引:0,他引:2  
As in any process, the laws of nature are at work in the continuous casting of metals. Heat spills down temperature gradients under the watchful eye of Fourier, while molten metal moves in response to inertial and body forces governed by the Navier-Stokes equations. Tensile strains develop in the solidifying shell subject to changing cooling conditions, the constitutive behavior of the metal, compatibility, and the Prandtl-Reuss relations. Solutes segregate as thermodynamics compete with diffusion to create a heterogeneous solid from a homogeneous liquid. The challenge to the process engineer is to harness these laws to continuously cast a metal section that is free of cracks, has minimal macrosegregation, and has the desired shape. Confronted with the demands of production, cost containment, and an educationally challenged workforce, the obstacles are very real. One response to the challenge is to move knowledge to the shop floor, where wealth is created, through expert systems to educate the workforce and through artificial intelligence to make the continuous casting process “smart.” Harnessing knowledge for wealth creation, and profitability, is the real challenge. The Edward DeMille Campbell Memorial Lecture was established in 1926 as an annual lecture in memory of and in recognition of the outstanding scientific contributions to the metallurgical profession by a distinguished educator who was blind for all but two years of his professional life. It recognizes demonstrated ability in metallurgical science and engineering. Dr. J. Keith Brimacombe delivered the 1996 Edward DeMille Campbell Memorial Lecture at the ASM-TMS Meeting in Cincinnati, OH. The written lecture was nearly complete at the time of his untimely passing on December 16, 1997 and has been finished and submitted by his colleague, Professor I.V. Samarasekera. On October 1, 1997, J. Keith Brimacombe was appointed the first President and Chief Executive Officer of the Canada Foundation for Innovation. This enterprise, newly established by the Federal Government of Canada, was provided with one billion dollars of funding with the objective of strengthening the nation’s research infrastructure in universities and hospitals. Sadly, Dr. Brimacombe was able to serve only 3 months of his term and succumbed to a massive heart attack on December 16, 1997, at the age of 54. Dr. Brimacombe held the Alcan Chair in Materials Process Engineering, The Centre for Metallurgical Process Engineering at the University of British Columbia, prior to his appointment with the Canada Foundation for Innovation. He was born in Nova Scotia, raised in Alberta, and received his undergraduate education at UBC, obtaining a B.A.Sc. (Hons.) in 1966. With the support of a Commonwealth Fellowship, he traveled to England and studied under one of the great metallurgical thermochemists of this century, F.D. Richardson, F.R.S., at Imperial College of Science and Technology in the University of London, where he received a Ph.D. in 1970. Subsequently, he was awarded the D.Sc. (Eng.) in 1986 by the University of London and an Honorary Doctorate of Engineering degree in 1994 by the Colorado School of Mines. He returned to the University of British Columbia in 1970 to establish courses and a research program in metallurgical process engineering. He remained at UBC, achieving the rank of Professor in 1979, Stelco Professor of Process Metallurgy (a chair endowed by Stelco) in 1980, Stelco/NSERC Professor (a chair endowed by Stelco and NSERC) in 1985, and the Alcan Chair in 1992. One of the finest metallurgical engineers on the world stage in this century, Dr. Brimacombe pioneered the application of mathematical models and industrial and laboratory measurements, to shed light on complex metallurgical processes spanning both the ferrous and nonferrous industries during his 27 year career at the University of British Columbia. For his groundbreaking research, he earned the reputation of being one of the most innovative intellectual grants in the field, for which he earned global recognition. During his tenure at UBC, he built a large collaborative research group in metallurgical process engineering consisting of about 70 faculty, graduate students, research engineers, and technicians. Much of the research was conducted in close collaboration with Canadian companies such as Stelco, Hatch Associates, Algoma Steel, Western Canada Steel, Sidbec-Dosco, Ivaco, Cominco. Noranda, Inco, Alcan, Domtar, Canadian Liquid Air, and Liquid Carbonic. The thrust of the research was the development and improvement of metallurgical processes, such as continuous casting of steel, flash smelting of lead and copper converting, rotary kilns, and microstructural engineering of steel and aluminum, and DC casting processes. This body of work led to 300 publications and nine patents as well as two books. In 1985, in cooperation with faculty colleagues, he founded the Centre for Metallurgical Process Engineering at UBC and was named its Director. The purpose of the Centre is to strengthen the interdisciplinary approach to metallurgical process research and to broaden the field of application to materials other than metals. For this body of research, he was awarded the B.C. Science and Engineering Gold Medal (1985) and the Ernest C. Manning Prize (1987) and, before that, the E.W.R. Steacie Memorial Fellowship (1979) from NSERC. He also received the following awards: TMS-AIME Charles Herty Award (1973 and 1987). AMS Marcus A. Grossmann Award (1976), TMS Extractive Metallurgy Science Award (1979, 1987, and 1989), ISS John Chipman Award (1979, 1985, and 1996), TMS Champion H. Mathewson Gold Medal (1980), ISS Robert Woolston Hunt Silver Medal (1980, 1983, and 1993), ASM Henry Marion Howe Medal (1980 and 1985), TMS Extractive Metallurgy Technology Award (1983 and 1991), the Williams Prize of the Metals Society (UK) (1983), the ISS Mechanical Working and Steel Processing Conference Meritorious Award (1986 and 1996), the ASM Canadian Council Lectureship (1986), and the CIM Metallurgical Society Alcan Award (1988). In 1981, he delivered the Arnold Markey Lecture to the Steel Bar Mill Association. In 1987, he was made a Distinguished Member of the Iron and Steel Society and a Fellow of the Royal Society of Canada. In 1988, he became a Fellow of the CIM and, in 1989, he delivered the TMS Extractive Metallurgy Lecture while being awarded Fellowship in TMS. Also in 1989, he was awarded the Izaak Walton Killam Prize for Engineering by the Canada Council, joined the Board of Directors of Sherritt Gordon Ltd., received the Bell Canada Corporate Higher Education Award and was appointed an Officer of the Order of Canada. In 1990, he received the Meritorious Achievement Award of the Association of Professional Engineers of British Columbia and a UBC Killam Research Prize. In 1992, he was honored with the Commemorative Medal for the 125th Anniversary of Canadian Confederation and, in 1993, delivered the Howe Memorial Lecture of the Iron and Steel Society and became Fellow of the Canadian Academy of Engineering. In 1994, he presented the D.K.C. MacDonald Memorial Lecture; and in 1995, he was the Inland Steel Lecturer at Northwestern University and received the Ablett Prize of the Institute of Materials. In 1996, he delivered the ASM Edward DeMille Campbell Memorial Lecture and, in 1997, received the AIME Distinguished Service, and he was elected a Foreign Associate of the National Academy of Engineering. In June 1997, he received Canada’s highest scientific honor, the Canada Gold Medal in Science and Engineering from the Natural Sciences and Engineering Research Council of Canada. In 1998, Dr. Brimacombe was posthumously awarded the Benjamin Fairless Award by the AIME and the Inco Medal by the CIM at their centennial celebration. Beyond the quest to generate knowledge and train young people, he was driven by the desire to see the fruits of his research implemented in industry. Not satisfied that publications in peer-reviewed journals are an effective means of reaching out to the shop floor, where knowledge implementation creates wealth, he worked tirelessly at the University-Industry interface to make the transfer of knowledge to industry a reality. A gifted speaker, he was renowned for his ability to translate complex research results to changes that are required to the process for improved quality and or productivity. Thus, he was sought after by the global metallurgical industry and presented over 50 courses in companies in every continent. A course on continuous casting of steel offered annually in Vancouver, under his directorship, attracted participants from around the world. He seized the opportunities provided by the revolution in computer technology to help further the transfer of knowledge, and since the early 1980s drove the development of user-friendly mathematical models as a means of transferring research results to industry. Brimacombe was also instrumental in developing “smart” systems for the transfer of knowledge and spearheaded the development of an expert system for diagnosing defects in steel billets, which is being marketed commercially. A recent project involving Canadian companies is the development of a “Smart Process,” in which knowledge is made to work in the process through the use of an on-line expert system and sensors. He gave unreservedly of his time to professional societies, which are a vehicle for knowledge transfer and professional development of materials engineers. He was the only professional who was President of the three major societies serving materials engineers in North America: TMS-CIM in Canada in 1985, TMS-AIME in 1993, and ISS-AIME in 1995. His enthusiasm for professional societies was infectious and has led to the initiation of a very dynamic student chapter at UBC. He served on the Killam Research Fellowships Committee of the Canada Council from 1982 to 1985, where he initiated the Killam Prize in Engineering and worked on other committees of the Canadian Council of Professional Engineers, the Science Council of British Columbia, and the Canadian Steel Industry Research Association. He served on the Boards of the ISS and TMS in the United States. He served on numerous committees in these societies, including Joint Commission and Board of Review of Metallurgical Transactions, Book Publishing Committee, Awards Committee, Extractive Metallurgy Sub-committee, Nominating Committee, and Long Range Planning Committee. In 1989, he assumed responsibilities as Founding Chairman of the TMS Extraction and Processing Division, in 1993–4 was TMS President, and in 1994–5 was Founding President of the TMS Foundation. In 1990, he was named as an Eminent Scientist to the Board of Directors of the Ontario Centre for Materials Research. In 1995, he was Chairman of the Science Policy Committee of the Royal Society of Canada and was a member of the National Materials Advisory Board (United States). In 1996, he was elected Vice President of the Academy of Science of the Royal Society of Canada and was appointed to the Board of the United Engineering Trust. He served on the Board of Trustees of the AIME since 1993; had he lived, he would have become President of the AIME in 1999.  相似文献   

5.
6.
Keith Brimacombe is remembered as one of the innovative giants in materials process engineering in the twentieth century. His impact stretches across diverse areas ranging from gas injection and flash smelting in nonferrous pyrometallurgy, on the one hand, to the continuous casting of steel, microstructural engineering, and rotary kilns on the other. Among his formidable research accomplishments, his contribution to steel processing stands out. It was an area which challenged him and from which he gained enormous intellectual satisfaction. In this article, Dr. Brimacombe’s remarkable contributions to steel research are reviewed to reveal his ingenuity and innovation, which were hallmarks of his efforts. These qualities had a profound impact, not only on the quality of his research discoveries, but also on the people he mentored, the discipline of materials process engineering he fostered, and on institutions spanning universities, industry, professional societies, and government. How did he accomplish so much in such a short time? What can we learn from his example? We learn that it is not time, but creativity and dedication to the goal, that matters. We learn while Dr. Brimacombe possessed remarkable creative genius, it can be taught and fostered in individuals in our universities, in industry, and in society. We learn that breaking down barriers between artificial disciplinary boundaries, between institutions, and, most importantly, between people is critical in fostering ingenuity and innovation. We learn that enhancing communication through discourse and debate, recognizing and rewarding excellence, and creating the right culture in an organization is paramount. Above all, we learn that people are our most valuable resource. The importance of these lessons for universities, industry, and professional societies, at this time of immense technological and social transformation, will be explored in this article. Brimacombe’s legacy and inspiring career are a beacon for us all as we manage change and steward this planet we call home.  相似文献   

7.
One of the greatest obstacles to the application of physical chemistry principles to the elucidation of slag‐metal reactions is a lack of knowledge of activities of the reacting species. To a large extent, oxygen potential of the slag phase governs iron and steelmaking practice. Without oxygen control by means of appropriate sensors, the behaviour of the other elements cannot be managed. In this paper, measurements of the FeO activity with various types of electrochemical FeO sensors will be described together with examples of their applications for improved strategies toward better practice for ladle metallurgy and sulphur and manganese distributions between slag and metal phases during steelmaking. Measurements of FeO activity have also been made in order to improve dephosphorization reactions. This type of work has led to significant reduction in volume of slag generated within the steelmaking vessel, which in turn, has important implications for refractory wear, metal yield, alloy recovery and improved productivity. Finally an on‐line sensor is described which permits the oxygen potential to be determined for both the metal phase and the slag phase during steelmaking in the BOF.  相似文献   

8.
炼钢过程的自动化及信息化建设日渐完善,由此积累了大量的生产和过程检测数据,为数据库技术应用提供了有利条件.通过完善整合原料、吹炼工艺、产品终点质量等原始数据,结合生产实际建立转炉炼钢的原始数据库;探索炼钢数据库的结构,建立基于数据库的工艺过程数据互算体系,充分利用数据库及人工智能技术对冶金工艺过程进行深入分析、改进优化...  相似文献   

9.
Drops and bubbles are of great importance to the extractive metallurgist in his attempts to speed up processes by the use of sprays, foams, and jets. In this lecture the ways in which bubbles bring about mass transfer in liquid metals and in slag metal reactions are described. The role of interfacial turbulence is considered together with the effects of bubble size and frequency and the properties of the slag and metal phases. Reactions between drops of metal and flowing gases are analyzed in terms of mass transfer in the reacting phases and of chemical steps at the interface. Recent results obtained on reactions involving metal drops falling through liquids are considered in relation to mass transfer models in which internal circulation plays an important part. The work described reports only one facet of the rapidly developing subject of Process Engineering which ought now to feature prominently in metalurgical education. Dr. F. DENYS RICHARDSON. Professor of Extraction Metallurgy. Department of Metallurgy, Royal School of Mines. Imperial College of Science and Technology, London, England, graduated in chemistry at University College, London, in 1933, and obtained a Ph.D. in physical chemistry in 1936. From 1937 to 1939 he was Commonwealth Fund Fellow at the University of Princeton. From 1946 to 1950 he worked as superintendent chemist at BISRA, building up the work of the chemistry department. He went to Imperial College in 1950 to found the Nuffield Research Group in Extraction Metallurgy and advance the study of chemical metallurgy at high temperatures. He received awards in recognition of his work on the thermodynamic properties of high-temperature systems with special reference to iron- and steelmaking and for his work on high-temperature chemical metallurgy. He was appointed Professor of Extraction Metallurgy at Imperial College in 1957, his objectives there being to establish the department as a research center for chemical and process engineering metallurgy, and to develop a metallurgy course in which these subjects receive as much attention as physical metallurgy. In 1963 he was elected a Fellow of the Metallurgical Society of the AIME, and in 1964 he gave the AIME Howe Memorial Lecture. Professor Richardson delivered the Hatfield Memorial Lecture in 1964, the May Lecture of the Institute of Metals in 1965, and the Wernher Memorial Lecture of The Institution of Mining and Metallurgy in 1967. He was elected a Member of Council of the Iron and Steel Institute in 1967, having been an Honorary Member since 1962. In 1968 he became a Vice-President of the Institution of Mining and Metallurgy. In that year he was also elected a Fellow of the Royal Society and awarded the Bessemer Gold Medal of the Iron and Steel Institute, both honors for his contribution to the understanding of the thermodynamics and kinetics of metallurgical processes. In 1970 the honorary degree of Doktor-Ingenieur was conferred on him by the Technische Hochschale, Aachen. The 1971 Extractive Metallurgy Division Lecture, “Drops and Bubbles in Extractive Metallurgy.” was delivered on Wedresday, March 3, 1971.  相似文献   

10.
Steel toughness has been greatly improved in the last two decades by adopting innovative technologies such as advanced steelmaking, grain refinement and thermo-mechanical treatment. The technology of oxide metallurgy is not a simple part of either chemical metallurgy or physical metallurgy. It aims at the generation of finely dispersed oxides by chemical metallurgy and using these oxides together with the methods of physical metallurgy such as IGF (intragranular ferrite) technology and phase transformation. Oxide metallurgy can be an effective way in addition to the conventional austenite grain refinement to obtain higher toughness for structural steels.  相似文献   

11.
The process structure of China′s steel industry is dominated by the BF BOF steelmaking process, and the energy structure is dominated by coal, which causes CO2 emissions per ton product higher than the world average level, and the pressure of CO2 emission reduction is great. In order to explore the low carbon status and development trend of China′s steel industry, multiple perspectives such as production process structure, scrap resources, low carbon technology and carbon trading market were analyzed deeply, coming to the conclusion that achieving the “dual carbon” goal of CO2 emissions peak before 2030 and carbon neutrality before 2060 is a long term and multi factor comprehensive process, the steel industry should establish different research priorities at different stages. At the same time, suggestions for further development are put forward. In the next step, China′s steel industry should accelerate the development of low carbon technology, increase the proportion of EAF steelmaking process, pay attention to the research and development of hydrogen metallurgy technology, and give full play to the role of policy and market regulation, finally get rid of the dependence of carbon metallurgy and embark on the road of low carbon steel.  相似文献   

12.
摘要:中国钢铁工业的流程结构特点是高炉—转炉长流程占主导,能源结构特点是以煤炭为主,因此造成吨钢CO2排放量高于世界平均水平,碳减排压力巨大。为探究中国钢铁工业的低碳现状与发展趋势,通过对流程结构、废钢资源、低碳技术、碳交易市场等进行深入分析,认为钢铁工业实现2030年碳达峰、2060年碳中和的“双碳”目标是一个长期的、多因素综合作用的过程,不同阶段应确立不同的研究重点,并就未来发展提出了自己的建议。钢铁工业下一步应该加快低碳技术发展、提高电炉短流程比例、重视氢冶金技术研发,并充分发挥政策和市场调节作用,最终摆脱碳冶金依赖,走向低碳化钢铁之路。  相似文献   

13.
Dusts,scale, slags,sludges... Not wastes,but sources of profits   总被引:3,自引:0,他引:3  
Historically, the steel industry has focused on the need for and the many benefits of recycling steel that is discarded either in its own or in its customers’ manufacturing processes, as well as in recovery and reuse of steel scrap that arises after the product has served its intended purpose. In fact, modern steelmaking relies on the use of recycled iron units for at least half of its production. The other side of the story is the fate of the non-steel by-products (e.g., oxide dusts, sludges, scales, slags, spent refractories and the contained “low grade” energy units that are generated as natural adjuncts to iron and steelmaking processes). These valuable by-products often are classified as “wastes” and are discarded to landfills, at significant cost, although in reality they offer significant potential for cost savings or profit if reintroduced into the industrial arena via well planned programs. Examples of such instances will be presented, including energy credit issues, in the hope of pointing the way for future expansion of benefits from these opportunities. Preparing for a challenge and honor such as the Howe Memorial Lecture, one has to stand in awe of the accomplishments of the predecessor we honor in this forum. He worked in the early days of our industry without the benefits of the many technological improvements he and his successors brought to play as the years went by. John Stubbles, in his Howe Memorial Lecture in 1997,[1] presented a masterful and entertaining biography of Howe and his very active and prolific life. Perhaps the most telling quotation he attributed to Howe is very pertinent to the topic we will address presently: “Metallurgy lives by profit, not logic,” to which I would like to add a comment that bears on the topic of this lecture from the 1991 Howe lecturer, my friend and mentor Bill Dennis, “Where there is muck, there is money.” There are numerous examples of “one hand washes the other” in this business; that is, of the synergism between needs and capabilities. We will address some of these situations, such as in a new process under development for dezincing of post consumer scrap, and in the use of iron units in by-product oxides and recycling of ladle slags and of spent refractories. Peter J. Koros, the Iron and Steel Society’s 77th Howe Memorial Lecturer (2001), is Principal of Koros Associates, Inc. (Pittsburgh, PA), a consultancy he founded following retirement from the former LTV Steel Company where he worked for nearly 41 years, retiring as Senior Research Consultant. He earned the Bachelor of Science degree in Metallurgical Engineering from Drexel University, and his master’s and doctoral degrees in Metallurgy from the Massachusetts Institute of Technology (MIT). In 1958, he joined Jones and Laughlin Steel (which became LTV Steel Company), where he held positions in research (Director, Process Metallurgy), Technical Services and Quality Control, with most activities focused on steelmaking and related areas. He was responsible for J&L’s development work in injection technology for desulfurization of hot metal and steel, was the inventor of the patented co-injection concept now in use worldwide, and had the lead role in LTV Steel’s programs for degalvanizing scrap and for recovery and utilization of by-product oxides. He led the AISI Opt-In program for degalvanizing scrap and the LTV-USS pilot program for processing “by-product” oxides. Koros has authored more than 75 publications and presentations, and holds eight U.S. patents, the latest issued in 2000. Dr. Koros was elected a Distinguished Member and Fellow of the ISS in 1984 and a Fellow of ASM International in 1988. Other honors include the ISS Distinguished Service Award (1998), ISS Electric Furnace Honorable Mention Citation (1987), International Magnesium Association Design and Applications Award (1978), AISI Gold (1977) and Silver (1969) Medals, ISS Herty (1963), McKune (1963), and Toy (1962) Awards. Koros served on the Technical Advisory Committee of the AISI-DOE Direct Steelmaking Program and its follow-on Waste Oxide Recycling Program. He was chairman of the AISI Task Force on Degalvanizing Steel Scrap and of the Industrial Advisory Panel to the Argonne Lab-MRI Program on Dezincing Steel Scrap. The 2001 Howe Memorial Lecture, titled “Dusts, Scale, Slags, Sludges ... Not Wastes But Sources of Profits,” as well as an invited Keynote Lecture for an International Recycling Conference in Sweden (June 2002, “Iron Units in Search of a Home: New Steel”) were based on the experience from these programs. Koros has been an active member of the ISS Advanced Technology Committee for which he participated in and chaired several symposia, including New Melting Technologies II (October 2002) and the first New Melting Technologies Symposium (1997). He was Director of the ISS 2000 Short Course on Injection Technology, a lecturer in the 2000 ISS/AISI Course on BOF Steelmaking, lead Co-chairman for the Elliott Symposium (1990), and Chairman of the Program Committee for the Fifth International Iron and Steel Congress (1986). Dr. Koros served on the Industrial Advisory Board of MIT’s Materials Processing Center (1995–98) and the AISI’s Iron and Steel Research Subcommittee (1976–86.) He was chairman of the ISS National Science Foundation Advisory Committee, the Advisory Council of the U.S. Bureau of Mines Generic Minerals Technology Center for Pyrometallurgy Research (1983–85), and of the Advisory Board for Carnegie Mellon University’s Center for Iron and Steel Research, for which he served as chairman (1991–1992). Service included participation in the NRC-NAS Alternative Energy and Development Strategy Study (1989–90.) Koros was very active in the creation of the ISS, having served as Chairman of the predecessor TMS Iron and Steel Division in 1972–73 and on the AIME Board of Directors (1974). Professional Society memberships: ISS (elected Distinguished Member and Fellow, Life Member), TMS (Senior or Life Member), ASM International (elected Fellow, Life Member), and AISE.  相似文献   

14.
Sulphur removal in the ironmaking and oxygen steelmaking process is reviewed. A sulphur balance is made for the steelmaking process of Tata Steel IJmuiden, the Netherlands. There are four stages where sulphur can be removed: in the blast furnace (BF), during hot metal (HM) pretreatment, in the converter and during the secondary metallurgy (SM) treatment. For sulphur removal a low oxygen activity and a basic slag are required. In the BF typically 90% of the sulphur is removed; still, the HM contains about 0.03% of sulphur. Different HM desulphurisation processes are used worldwide. With co-injection or the Kanbara reactor, sulphur concentrations below 0.001% are reached. Basic slag helps desulphurisation in the converter. However, sulphur increase is not uncommon in the converter due to high oxygen activity and sulphur input via scrap and additions. For low sulphur concentrations SM desulphurisation, with a decreased oxygen activity and a basic slag, is always required.  相似文献   

15.
王同起 《中国冶金》2008,18(12):48-50
李维格先生是近代中国的政治家、实业家和教育家,曾倡导推进戊戌变法、创办汉冶萍有限公司,主持上海交通大学工作,还捐出巨额家产支持中国的高等教育事业。在冶金方面,他多次出国考察,改进炼钢设备,注重培养中国工程技术人员,创办了最早的冶金职业专门学校,并大胆改革钢铁企业用人和管理制度,是近代中国冶金业伟大的拓荒者和奠基人,为中国钢铁冶炼的近代化和民族工程技术人员的培育做出了重要贡献。  相似文献   

16.
Hydrometallurgical extraction of metals is an important widely practiced technology in the metallurgical industry for treating both primary and secondary resources of valuable metals. Successful hydrometallurgical approaches to metal extraction require a full understanding of a wide spectrum of scientific and engineering principles in many disciplines. These include solution chemistry, electrochemistry, thermodynamics, kinetics, transport processes, and, frequently, biology. In this article, intricate relationships among various disciplines influencing hydrometallurgical extraction are reviewed and analyzed with pertinent examples. The effect of operating parameters on the overall extraction strategy are examined and discussed. The Extraction and Processing Lecturer Award honors an outstanding scientific leader in the field of nonferrous extractive metallurgy with an invitation to present a comprehensive lecture at the TMS Annual Meeting. Kenneth N. Han is the Regents Distinguished Professor and Douglas W. Fuerstenau Professor in the Department of Materials & Metallurgical Engineering at the South Dakota School of Mines and Technology (SDSM&T). He obtained his B.S. and M.S. degrees from Seoul National University (SNU), an M.S. from the University of Illinois, and a Ph.D. from the University of California, Berkeley. He was with the Department of Chemical Engineering, Monash University (Melbourne, Australia) from 1971 to 1980. In 1981, he joined SDSM&T. He was head of the Department of Metallurgical Engineering from 1987 to 1994 and dean of the College of Materials Science and Engineering from 1994 to 1999. His research interests include hydrometallurgy, interfacial phenomena, metallurgical kinetics, solution chemistry, fine particle recovery, and electrometallurgy. He has directed over 70 graduate students and postdoctorate researchers, published more than 150 papers in national and international journals, and presented more than 100 papers at international conferences. He is an author of ten monographs and holds eight patents in the area of extractive metallurgy. In 1987, he received the Presidential Professor Award from SDSM&T. In 1994, he received the Ernest L. Buckley Award, a South Dakota State Governor’s Award, for his industrial research efforts. He received the Milton E. Wadsworth Award and the Arthur F. Taggart Award from the Society of Mining, Metallurgical and Exploration in 1995. In 1997, he received the Distinguished Alumni Award from the College of Engineering of SNU. He became an SME Distinguished Member in 1998. In 1998, he was awarded the Excellence in Research by the SD Board of Regents. In 2000, he received the AIME Mineral Industry Education Award, and, in 2002, the Robert H. Richards Award from AIME. In 2003, he received the 2003 Extraction and Processing Distinguished Lecturer Award at the 132 TMS annual meeting in San Diego. He was inducted into the National Academy of Engineering in 1996. He is a foreign member of the National Academy of Engineering of Korea since 1998 and was inducted into the Korea Academy of Science and Technology in 1999.  相似文献   

17.
《钢铁冶炼》2013,40(8):554-561
Abstract

All operations in process metallurgy involve complex phenomena comprising momentum, heat, and/or mass transport; iron- and steelmaking is not an exception. Transport phenomena, i.e. fluid flows, heat transfer and mass transfer, play a dominant role in process metallurgy since their respective laws govern the kinetics of the various physical phenomena occurring in ironmaking and in steelmaking. These phenomena include such events as three-phase reactions, entrainment of slag and gas in liquid steel, vacuum degassing, alloy melting and mixing, the movements and flotation of inclusions, melt temperature losses, residence times in a metallurgical reactor, erosion of refractory linings, etc. In all these aspects, the evolution in our techniques and abilities to model single and multiphase flows and their attendant heat and mass transfer processes has contributed significantly to our understanding and effectively operating these processes, to designing improvements, and to developing new processes. To be ignorant of these matters can doom a processing operation to the scrap heap of metallurgical failures. Computational fluid dynamics (CFD) and computational heat and mass transfer has been a very effective tool over the last three decades, for modelling iron- and steelmaking processes, starting from the blast furnace up to continuous casting and beyond. With the advent of commercial CFD packages and ever increasing computational power through parallel processing, CFD has now become the dominant approach for predicting various aspects in iron- and steelmaking processes. In Part 1 of this review paper, the applications of CFD in ironmaking processes are thoroughly reviewed, discussed and critiqued. In Part 2, fluid flows and CFD in steelmaking and steel casting processes are similarly reviewed and critiqued.  相似文献   

18.
炼钢脱氧工艺现状及改进攀钢脱氧工艺的建议   总被引:3,自引:1,他引:2  
主炼钢脱氧的发展及攀钢炼钢脱氧工艺的观状,并对炼钢脱氧工艺及脱氧剂进行了分析评价,对攀钢脱氧工艺的发展提出了建议。  相似文献   

19.
The Symposium of the Faraday Society in 1948 entitled “Physical Chemistry of Process Metallurgy” occurred at a time when the science of pyrometallurgy was just beginning an era of rapid development. This lecture discusses the growth of the subject in the ensuing 25 years showing that a profound increase in our range of understanding and of factual information has taken place. The knowledge which has been gained now provides a good general framework for the industrial application of principles and for teaching at the University level. The social and intellectual climate of the times, however, appears to be leading to a slow-down in the pursuit of fundamental knowledge, in this as in many other applied scientific fields, and the case is argued for a renewal of effort. The Extractive Metallurgy Lecture was authorized in 1959 to provide an outstanding man in the field of nonferrous metallurgy as a lecturer at the annual AIME meeting. C. B. ALCOCK is Chairman of the Department of Metallurgy and Materials Science at the University of Toronto. He is a 1944 graduate of the Chemistry Department of London's Imperial College. He received his doctorate in chemical metallurgy from London University in 1955. After a short spell with the British Iron and Steel Research Association he was appointed Investigator in the Nuffield Research Group of the Royal School of Mines in 1950. Joining the academic staff of the Metallurgy Department in 1953 as a Lecturer, Dr. Alcock was a Reader in 1961 and a Professor of Metallurgical Chemistry in 1965. Dr. Alcock is a former Science Research Foundation Professor of the Carnegie Institute of Technology and of North Carolina State University. He was a Ford Visiting Professor at the University of Pennsylvania in 1965. Dr. Alcock's research interests are in high temperature chemistry of metal and ceramic systems. He is a Fellow of the Institution of Mining and Metallurgy (London).  相似文献   

20.
文章论述了我国冶金行业烧结球团设备装备水平的大型化发展,并分析了包钢烧结球团目前的现状,提出了设备大型化改造的必要性和紧迫性,另外,给出了具体实施的几种方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号