首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The effect of a modified austemper on the tensile properties of 0·52%C steel has been studiedfor the purpose of developing the mechanical properties of upper bainitic steel. The modified austempering treatment involved intercritical annealing at 1018 K in the two phase region offerrite (α) and austenite (γ) followed by austempering at 673 K and subsequent water cooling. The results have been compared with those obtained from conventionally austempered steel, and quenched and tempered steel with a similar ultimate tensile stress. The modified austempered steel consisted of a mixed structure of upper bainite and 10 vol.-% ferrite in which ferrite appeared as layers along the rolling direction. The modified austempering treatment wasfound to significantly increase the product of ultimate tensile stress and total elongation, and also the notch tensile stress at 193 K. Conventional austenitising at 1173 K followed by subcritical annealing at 998 K in the two phase region of ex and y, and then austempering at 673 K and subsequent water cooling produced the same mixed structure of upper bainite and 10 vol.-% ferrite. However, this treatment yielded inferior mechanical properties to those obtained with the modified austempering treatment, independent of the test temperature. The results are described and discussed.

MST/3102  相似文献   

2.
Abstract

The low temperature mechanical properties of 0·4C–Cr–Mo–Ni steel can be improved significantly by thefollowing treatments. Modified oil quenching (MOQ): interrupt quenching at 573 K just below the martensitic transformation temperature followed by short time tempering at 673 K (up-quenching) before oil quenching and subsequently 473 K tempering (after conventional 1133 K austenitisation). Modified austempering (MA): the same up-quenching treatment followed by austempering at 673 K and subsequently water cooling. Each modified treatment was compared with its corresponding conventional treatment. The MOQ treatment significantly improved the notched tensile strength of the steel with slightly increased 0·2%PS and UTS, owing to an increase infracture ductility over the temperature range 123–203 K and also improved the Charpy impact energy of the steel over the temperature range 203–373 K. As a result of the MA treatment, the 0·2%PS and UTS and the notched tensile strength were developed remarkably with little change of fracture ductility over the temperature range 123–293 K. This treatment also improved the Charpy impact energy of the steel over the temperature range 203–293 K. The beneficial effect of the modified heat treatments on the mechanical properties is briefly discussed in terms of a modified law of mixtures, fibre loading theory, and fracture profiles.

MST/1157  相似文献   

3.
采用定量金相的方法研究GCr15轴承钢在球化退火、奥氏体化淬火、低温回火等不同热处理工序后其碳化物的演变行为,通过ThermoCalc软件进行数值模拟计算分析碳化物尺寸和成分对其在奥氏体化时固溶动力学的影响。结果表明:球化退火处理后形成的碳化物粒子尺寸呈多峰分布,奥氏体化和回火后的碳化物粒子尺寸分布为单峰分布,奥氏体化后碳化物中Cr含量略有增加;Cr含量高的碳化物粒子具有较大尺寸;球化退火形成的碳化物在奥氏体化时大量固溶形成了富碳奥氏体,淬火后转变为高碳马氏体并导致高硬度;奥氏体化时碳化物固溶发生Cr的配分导致碳化物中Cr含量增加;直径200nm的碳化物即使其Cr含量接近基体成分,也不能在奥氏体化热处理时完全固溶,未溶的碳化物颗粒将影响后续回火过程的碳化物析出。  相似文献   

4.
采用热磁分析、显微硬度分析与直读光谱分析等相结合的方法,对无碳化物贝氏体钢进行渗碳后的深冷处理工艺优化。结果表明:无碳化物贝氏体钢在1193K渗碳空冷后,测试有效硬化层样品的热磁曲线,可以得到有效硬化层的深冷处理温度宜低于134K。经123K深冷处理和463K回火,有效硬化层残留奥氏体含量约为12.2%(质量分数)。通过深冷处理使渗碳钢近表面层得到显著硬化,再经低温回火使近表面层硬度均达到810HV_(1.0)左右,渗碳钢的硬度梯度分布趋于合理。  相似文献   

5.
为研究贝氏体区等温时间对热轧TRIP钢残余奥氏体和力学性能的影响,采用金相显微镜、X射线衍射、拉伸实验等方法对3种不同贝氏体区等温时间下制备的热轧TRIP钢进行分析.结果表明:随着贝氏体等温时间的延长,残余奥氏体量减少而残余奥氏体碳含量增加,残余奥氏体晶粒尺寸及残余奥氏体形貌变化不大;热轧TRIP钢的力学性能随着贝氏体...  相似文献   

6.
The modified heat treatment, which produces a mixed structure of martensite and lower bainite through short-term isothermal transformation at just above the martensitic transformation temperature,M s temperature, followed by oil quenching (after conventional austenitization), has been applied to three high-carbon low-alloy steels with different levels of nickel and chromium contents at similar molybdenum levels, in which carbon was allowed to replace relatively expensive additions of nickel and chromium, for their ultra-high strength application. The significant conclusions are as follows: an ultra-high strength steel of 1900 M Pa yieldstress grade with a high toughness level can be obtained when about 60 vol % lower bainite is associated with 473 K tempered martensite of 0.60% C-1.80% Ni-0.80% Cr-0.25% Mo steel. If approximately 25 vol % lower bainite appears in 673 K tempered martensite of the steel, a 1700 M Pa yield-stress grade steel with high toughness and moderate ductility levels can be attained. However, alloying nickel is essential to some extent for development of the mechanical properties with the modified heat treatment suggested in the present work.  相似文献   

7.
针对高温热成型及正常调质处理后连铸10CrNi3MoV钢性能恶化这一问题,研究了循环/亚温淬火热处理工艺,进行了力学性能测试、显微组织观察及晶粒度评定.结果表明,采用亚温淬火( 835℃×2h+ 820℃×2h)+高温回火(630℃×3h)热处理工艺,可有效细化连铸10CrNi3MoV钢的晶粒,显著改善其低温韧性,使其...  相似文献   

8.
Commercially available 0.4C-Cr-Mo-Ni steel was studied to determine the effects on its mechanical properties of various microstructures produced by continuous-cooling transformation after austenitization. A good combination of strength and notch toughness was obtained independently of test temperatures (293 and 193 K) when the steel was austenitized at 1173 K and then continuously cooled at an average rate of 3.1 K s–1 (expressed as the average cooling rate from 823 to 573 K) before final rapid cooling. The microstructure of the steel consisted of a mixed structure of martensite and 10–15 vol% lower bainite, which appeared in acicular form in association with the martensite. Slower cooling had a detrimental effect on the mechanical properties of the steel; the microstructure of this steel consisted of a mixed structure of martensite and upper bainite, which appeared as masses in the matrix. As the average cooling rate increased, the lath size and internal stringer-carbide size in the upper bainite were larger, and retained a somewhat increased austenite content.  相似文献   

9.
Titanium nitride films deposited onto steel substrates maintained at 423 K were heat treated in the temperature interval 773–1173 K. Samples were studied by electron probe microanalysis and X-ray diffraction. The high values of the microhardness observed for the as-deposited films decreased after annealing for 3 h at 973 K to nearly bulk values. This decrease is mainly due to the improvement in the microstructure of the films. It is accompanied by strong decreases in strain, stress and the lattice parameter of δ-TiNx. Growth of the ε-Ti2N phase at the expense of the δ-TiNx phase was observed in a film with 34 at .% N when it was annealed for 3 h at 973 K. The lattice parameter and strain in the substrate increased after film deposition, most probably due to a dissolution of nitrogen or titanium atoms in the lattice of -Fe.  相似文献   

10.
Two low alloy Cr and CrMo steels with similar levels of carbon, manganese and chromium have been studied to determine the effect of tempering temperature on the mechanical properties and microstructure. The quenching and tempering of steels were carried out using a high-speed dilatometer. The steels were quenched at the average cooling rate of 30 K s-1 in the temperature range from 1123 to 573 K by flowing argon and tempered at 673, 823 and 973 K. The martensite of steels formed during quenching was of entire lath morphology with 2 vol% retained austenite. It was found that after tempering at 973 K the Cr steel contained only orthorhombic cementite, while the CrMo steel contained the cementite and hexagonal Mo2C particles in the ferrite matrix. At the same tempering conditions, the CrMo steel shows higher strength but lower ductility as compared to those of Cr steel. It is shown that this difference results from finer prior austenite grain, substructure within matrix and precipitate dispersion strengthening, primarily by Mo2C. Transmission electron microscopy (TEM) bright- and dark-field micrographs as well as selected area diffraction pattern analysis of orientation relationship showed that the cementite precipitated from the ferrite matrix. Fractography analysis showed that the morphology fracture surface was changed by increasing tempering temperature. Tempering at 973 K obtained ductile fracture by the microvoid coalescence mechanism.  相似文献   

11.
对一种钒微合金化TRIP钢进行冷轧连续退火,研究了钢的组织特征和力学性能。结果表明,贝氏体基TRIP钢的组织由贝氏体/马氏体和少量的残余奥氏体组成。随着贝氏体区等温时间的延长,钢的抗拉强度下降,屈服强度和延伸率提高。残余奥氏体由块状向薄膜状转变,体积分数增加,薄膜状残余奥氏体主要分布在贝氏体板条间,厚度为50-90 nm。在400℃等温180 s连续退火钢板呈现出相对低抗拉强度(960 MPa)、高屈服强度(765 MPa)和高延伸率(22.0%)的特性,而且加工硬化指数(0.20)、各向异性指数(0.94)和强塑积(21120 MPa.%)也较为优良。  相似文献   

12.
对690 MPa级海工钢进行“淬火+两相区退火+回火”三步热处理,研究了回火温度对其组织和性能的影响、分析了力学性能变化与组织演变和残余奥氏体体积分数之间的关系。结果表明:回火后实验钢的显微组织为回火贝氏体/马氏体、临界铁素体和残余奥氏体的混合组织。随着回火温度的提高贝氏体/马氏体和临界铁素体逐渐分解成小尺寸晶粒,而残余奥氏体的体积分数逐渐增加;屈服强度由787 MPa降低到716 MPa,塑性和低温韧性明显增强,断后伸长率由20.30%增至29.24%,-40℃下的冲击功由77 J提升至150 J。残余奥氏体体积分数的增加引起裂纹扩展功增大,是低温韧性提高的主要原因。贝氏体/马氏体的分解和残余奥氏体的生成,引起组织细化、晶粒内低KAM值位错的比例逐渐提高和小角度晶界峰值的频率增大,使材料的塑性和韧性显著提高。  相似文献   

13.
The effect of microstructure on the slow bending stress and fracture energy in 0.5C-steel processed by high temperature thermomechanical treatment (processed by forging) (HTMT) was studied to understand which microstructural factors contribute to the strength and toughness of a HTMT steel. Significant improvement was achieved in the slow bending fracture energy, with moderate increase in the slow bending stress when the steel was deformed by 50% at 1473K followed by direct water quenching and subsequent tempering at 453 K. When the steel was deformed by 50% reduction at 1173 K followed by direct water quenching and subsequent tempering at 423 K, the slow bending stress significantly increased though the increase in the fracture energy was not as great as that of the 1473 K forged steel. However, an abrupt reduction occurred in the fracture energy above suitable tempering temperatures, so above these temperatures, there was little difference between the properties of the HTMT and conventional heat-treated steels. Microstructural factors contributing to the mechanical properties are discussed in terms of thin-foil transmission electron microscopy, non-isothermal dilatometry, and X-ray measurements.  相似文献   

14.
We obtained a good combination of strength and ductility in a 0.4C-2.0Mn-1.7Si-0.4Cr(wt%) steel,namely,~1.7 GPa of ultimate tensile strength and ~26% of elongation,by conducting a Q-P-T(quenching-partitioning- tempering) process incorporating the formation of carbide-free bainite. The tempering behavior of this steel was discussed by using experimental finding(scanning electron microscopy,X-ray diffraction(XRD),transmission electron microscopy and dilatometer) and CCE(constrained carbon equilibrium) modeling. The XRD results combined with CCE calculation prove that carbon partitioning from martensite to austenite occurs during tempering. Consequently,the thermodynamic stability of retained austenite is enhanced. This idea can be utilized to design novel Q-P-T processes in future.  相似文献   

15.
将低温贝氏体相变前淬火得到由马氏体、贝氏体铁素体和残余奥氏体组成的纳米贝氏体钢,使用扫描电镜(SEM)、X射线衍射(XRD)和透射电镜(TEM)等手段观察在不同温度回火的纳米贝氏体钢的显微组织和硬度变化,研究了预相变马氏体对纳米贝氏体钢热稳定性的影响。结果表明:含有马氏体的纳米贝氏体钢在中低温(473~773 K)回火后其硬度比回火前的高,回火温度高于823 K其硬度迅速下降到266.2HV(923 K)。预形成的马氏体在473~573 K回火后向附近的残余奥氏体排碳,后者的碳含量提高到峰值1.52%,提高了残余奥氏体的热稳定性,延迟后者在高温时的分解,从而提高了纳米贝氏体钢的高温热稳定性;回火温度高于723 K则残余奥氏体分解成碳化物,贝氏体铁素体粗化、回复形成新的铁素体晶粒。  相似文献   

16.
在真空条件下对航空轴承用8Cr4Mo4V钢进行不同温度的分级淬火并采用扫描电镜观察其微观组织、用XRD谱进行相分析并测试洛氏硬度、冲击性能和旋转弯曲疲劳性能,研究了真空分级淬火对其微观组织和力学性能的影响。结果表明,真空分级淬火后的8Cr4Mo4V钢其微观组织由下贝氏体、马氏体/残余奥氏体和碳化物组成;随着分级淬火温度的提高,淬火和回火态钢中析出碳化物的数量增加,残余奥氏体的含量降低。分级淬火温度为580℃时淬火态钢中贝氏体的含量最高(达到13.87%),残余奥氏体的含量为28.59%。回火后析出碳化物的含量和洛氏硬度均为所有分级温度中的最大值,分别为4.37%和62.38HRC。真空分级淬火能提高8Cr4Mo4V钢的综合力学性能。与未分级真空淬火相比,进行580℃×10 min真空分级淬火的8Cr4Mo4V钢的冲击韧性提高了23.3%,旋转弯曲疲劳极限提高了110 MPa。  相似文献   

17.
Abstract

The microstructural evolution in (2–15)Cr–2W–0·1C (wt-%) firritic steels after quenching, tempering, and subsequent prolonged aging was investigated, using mainly transmission electron microscopy. The steels examined were low induced radioactivation ferritic steels for fusion reactor structures. With increasing Cr concentration, the matrix phase changed from bainite to martensite and a dual phase of martensite and δ ferrite. During tempering, homogeneous precipitation of fine W2C rich carbides occurred in bainite and martensite, causing secondary hardening between 673 and 823 K. With increasing tempering temperature, dislocation density decreased and carbides had a tendency to precipitate preferentially along interfaces such as bainite or martensite subgrain boundaries. During aging at high temperature, carbides increased in size and carbide reaction from W2C and M6C to stable M23C6 occurred. No carbide formed in δ ferrite. The precipitation sequence of carbides was analogous to that in conventional Cr–Mo steels.

MST/1049  相似文献   

18.
对12%Cr和13%Cr系列ZG04Cr13Ni4Mo不锈钢进行893 K一次回火和893 K+863 K二次回火处理,使用热膨胀仪、X射线衍射仪和室温单轴拉伸等手段研究了Mo含量对这两个系列不锈钢的相组成和力学性能的影响。结果表明,随着Mo和Cr含量的提高钢的奥氏体化开始点(As)温度逐渐降低。不同Mo含量的钢经过893 K两相区温区一次回火处理,在加热和保温过程中马氏体向逆变奥氏体的转变量,与回火冷却至室温得到的逆变奥氏体含量不同。这种不同,导致12%Cr系列ZG04Cr13Ni4Mo钢随着Mo含量从~0.3%提高到~0.6%其屈服强度略有降低而抗拉强度略有提高,而Cr含量提高到13%Cr随着Mo含量的提高ZG04Cr13Ni4Mo钢经893 K回火后其屈服强度和抗拉强度都小幅度提高。  相似文献   

19.
The purpose of this paper is the investigation of the dehydrogenation kinetics of boron nitride films during thermal annealing. BNx:H films on silicon substrates were prepared by remote plasma enhanced chemical vapour deposition at 473 K using a mixture of borazine and helium. IR spectroscopy and ellipsometry were used to characterize the film properties and composition. The films contain a certain amount of hydrogen in B---H and N---H bonds. The breakage kinetics of these bonds is different. The breakage of N---H bonds determines the hydrogen annealing kinetics at 973–1073 K. The low-temperature annealing (673–873 K) of B---H bonds is sensitive to the generation of hydrogen from N---H bonds. Heat treatment leads to ordering of the films.  相似文献   

20.
Bai  Shao-bin  Xiao  Wen-tao  Wang  Yi-de  Li  Da-zhao  Zhuang  Zhi-hua  Zhang  Wang-gang  Liang  Wei 《Journal of Materials Science》2021,56(24):13801-13813

To optimize the formability and strength of hot-rolled Fe-10Mn-0.4C-2Al-0.6 V medium Mn steel, intercritical quenching and tempering processes were carried out. The strength of the steel was enhanced, and the Lüdders platform was eliminated. The higher strength of the steel was attributed to the occurrence of a complex twinning effect, martensitic transformation and V-carbide precipitation during tensile deformation. In particular, the twin martensite structure retained after the quenching-tempering process served as another previous twin to accelerate the generation of nanomechanical twins in recrystallized austenite grain. The occurrence of transformation-induced plasticity (TRIP) of austenite with poor stability in non-recrystallized regions stimulated the TRIP and twinning-induced plasticity (TWIP) effects in austenite with high stability in recrystallized regions. Therefore, two pathways to improve the formability and optimize the mechanical properties of medium Mn steel by adjusting the quenching and tempering processes were proposed in this paper: (1) Manufacturing more martensite twin structures and (2) regulating the balance of austenite stability in both recrystallized and non-recrystallized regions.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号