首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
本文用光线传输法(BPM)对集成光学无间距定向耦合器型光开关分叉角对消光比的影响进行了数值分析。  相似文献   

2.
本文用光线传输法(BPM)对集成光学无间距定向耦合器型光开关分叉角对消光比的影响进行了数值分析。  相似文献   

3.
董磊  卓壮  赵圣之 《激光技术》2008,32(1):15-17
为了分析影响双块晶体电光开关消光比的各项因素,采用折射率椭球方法,进行了理论分析和实验验证.结果表明,两晶体通光方向偏差及偏振器件透振方向偏差对消光比影响较大,只要仔细调解上述两方面就能实现较好的电光调Q效果.  相似文献   

4.
方云团  范俊  欧阳正标 《激光与红外》2007,37(12):1293-1295
设计了新型的光开关器件,该器件建立在掺杂电光材料的一维光子晶体上.运用传输矩阵法研究掺杂电光材料的一维光子晶体的传输特性.结果发现对特定缺陷模频率的光波,可以通过加在掺杂电光材料的电场来控制光信号的通断.当外加交变电场时,一维光子晶体周期性地输出脉冲.输出脉冲的间隔周期是外加电场的一半.  相似文献   

5.
设计并制作了一种新型的SOI 2×2马赫-曾德(MZ)热光开关.这种光开关采用了深刻蚀结构的配对多模干涉耦合器,同时,为了保证单模传输和调制,在连接波导和调制臂区域采用了浅刻蚀结构.深刻蚀结构增强了多模干涉耦合器对光场的限制,有利于自映像质量的提高,从而减少了自映像损耗和不均衡度,同时也提高了制作容差.基于强限制配对干涉耦合器的新型热光开关,其插入损耗为-11.0 dB,其中包括光纤-波导耦合损耗-4.3 dB,上升和下降开关时间分别为3.5μs和8.8μs.  相似文献   

6.
毛玉政  陈亚婧  朱京平 《红外与激光工程》2022,51(8):20210713-1-20210713-7
波导偏振器是片上集成相干光学系统中的关键器件之一,超高消光比、低损耗、紧凑型波导偏振器的设计一直是研究的热点。基于绝缘体上硅平台的倾斜Bragg光栅被用于实现超高消光比波导偏振器结构。利用一维光子晶体能带理论分别计算TE和TM模式光的能带结构分布,选择TE模式禁带与TM导带重叠带隙设计光栅,可实现TM模式低损传输,而TE模式被Bragg光栅高效反射,从而产生超高偏振消光比。3D FDTD仿真表明:16 μm倾斜Bragg光栅波导偏振器可在中心波长1550 nm附近70 nm的带宽内,实现大于37 dB的超高消光比,器件的损耗小于0.64 dB;进一步增加光栅周期数,当长度为25 μm时,消光比可提高至46 dB。Bragg光栅倾斜角与刻蚀宽度偏差仿真表明:设计的结构加工误差容限较大,同时该结构仅需一次曝光刻蚀,工艺流程简单。  相似文献   

7.
该文理论分析了影响光纤声光调制器消光比的主要因素。通过采用双器件级联和电路延时可调方案,得到了光脉冲上升时间和下降时间<10 ns,消光比>100 dB,脉冲利用率>97%的高效超高消光比光纤声光调制器(FAOM)模块。采用该模块在激光测风雷达系统中实现了4 800 m的风速风向测量。结果表明,该文采用的设计方法在提高FAOM消光比的同时能够有效控制脉冲利用率,对于基于激光相干探测的测量系统性能提高有一定的促进作用。  相似文献   

8.
为了提高消光比测试系统的测试精确度,利用偏振干涉原理研究设计了一种用于此系统的衰减器,并对它的工作机理进行了详细分析。此衰减器主要包括3个偏光棱镜,1个λ/4波片(632.8nm),两个步近电机。它可以对光强度进行连续调节,其调节范围在0~60dB之间,插入损耗小于1.5dB,消除了以往更换固定衰减量的衰减器带来的误差。此光衰减器用在高消光比测试系统中可以得到优于10-7量级的消光比,它不仅可以用于高消光比测试系统,同样可用于其它光学测试系统。当用消色差波片代替λ/4波片时,它能对多种波长的光进行衰减,扩大测试系统对光谱区的使用范围。  相似文献   

9.
10.
基于硅基铌酸锂薄膜(Lithium Niobate on insulator,LNOI)材料平台,设计并制备了高速电光开关芯片,并实现了芯片的光纤耦合、管壳封装和性能测试。测试结果表明,该高速电光开关器件的开关速度达到13.4 ns,消光比达到31.8 dB。研究工作对未来研制光学延时芯片和波束形成网络芯片具有重要的支撑意义。  相似文献   

11.
基于偏振干涉原理,设计了一种用于测量偏光镜消光比的连续可调智能化衰减系统。该系统由3个标准偏光镜、1个632.8 nm的1/4波片、1个步进电机和微机共同组成,其中1个偏光镜的主透射方向和波片快慢轴的夹角为45°并组成标准圆偏器,利用计算机控制步进角为0.25°的步进电机旋转圆偏器,从而达到连续衰减光强目的。其衰减范围可在0~60 dB间扩展,插入损耗小于1.2 dB。用该系统测量时,可得到优于10-7量级的消光比值。对衰减系统的调节机理进行了分析,并给出圆偏器旋转不同角度下系统的透射曲线。  相似文献   

12.
静电驱动MEMS开关可靠工作需要较高的驱动电压,大多数射频前端系统很难直接提供,因此需要一种实现电压转换和控制的专用芯片,以满足MEMS开关的实用化需要。本文基于200V SOI CMOS工艺设计的高升压倍数MEMS开关驱动电路,采用低击穿电压的Cockcroft-Walton电荷泵结构,结合特有的Trench工艺使电路的性能大大提高。仿真结果显示驱动电路在5V电源电压、0.2pF电容和1GΩ电阻并联负载下,输出电压达到82.7V,满足大多数MEMS开关对高驱动电压的需要。  相似文献   

13.
朱竹青  王发强  殷奎喜 《中国激光》2004,31(10):245-1251
对基于半导体光放大器(SOA)交叉增益调制(XGM)效应的全光波分复用一光时分复用(WDM—OTDM)转换后的两路时分复用输出信号的消光比(ER)特性进行了分析。研究了两路波分复用的输入抽运光和探测光的功率、波长、抽运光的消光比、数据速率以及半导体光放大器的偏置电流、腔长和模场限制因子对转换信号消光比的影响。模拟结果表明,增大抽运光输入功率,选择长波长抽运光,可以增加转换光相应信道消光比,但减小了相邻信道的输出消光比;增加抽运光消光比,可以提高转换光消光比,但各个信道增长幅度不同;减小探测光输入功率,选取短波长探测光波长,增加半导体光放大器的腔长和模场限制因子以及大的偏置电流可提高转换光消光比;对于两路或多路波分复用信号转换时分复用信号的过程中,一定要考虑转换光每个信道消光比的均衡。  相似文献   

14.
雷宇  方健  张波  李肇基 《半导体学报》2005,26(6):1255-1258
设计实现SOI基上带有D/A驱动的高压LDMOS功率开关电路,利用D/A变换的灵活性,运用数字电路与高压模拟电路混合设计方法,实现数字控制的耐压为300V的LDMOS功率开关电路.该功率集成电路芯片的实现,为SOI高压功率开关电路提供了一种更为方便快速的数字控制设计方法,同时也为功率系统集成电路提供了一种有效的实验验证,从而证实了功率系统集成的探索在理论上以及工程上具有一定的可行性.  相似文献   

15.
高芯片偏振消光比铌酸锂多功能集成光学器件   总被引:1,自引:0,他引:1  
分析了铌酸锂多功能集成光学器件的偏振消光机理,设计和制作了高芯片偏振消光比的铌酸锂多功能集成光学器件。器件采用切断部分输入直波导后在切断端面选择性镀阻光膜的结构以截断射入衬底的辐射光,与芯片耦合后实现了高于85dB的芯片偏振消光比。制作的器件插入损耗小于3.5dB,分光比为48/52~52/48,半波电压Vπ小于3.5V,尾纤偏振串音小于-33dB;在-55~+85℃全温范围内,损耗变化量小于0.2dB,分光比变化小于1%,尾纤偏振串音小于-27dB,能够满足工程化应用需要。  相似文献   

16.
基于SOA-XGM波长转换器消光比特性的研究   总被引:1,自引:1,他引:0  
建立了基于半导体光放大器交叉增益调制(SOA XGM)的波长转换理论模型,利用分段方法对XGM波长转换器同向和相向两种工作方式下消光比特性作了详细的研究。结果表明,相同情况下相向工作方式下的输出消光比特性要优于同向工作方式的。最后,从物理上对两种工作方式消光比和噪声特性的差异做了解释。  相似文献   

17.
紧缩型SOI多模干涉光开关的设计   总被引:1,自引:0,他引:1  
提出了一种新的紧缩型SOI多模干涉(MMI)光开关。开关由单模输入输出波导和MMI耦合器组成。通过在多模波导区域引入调制区,利用Si的等离子色散效应(PDE)改变调制区的折射率来实现开关动作。用FD-BPM方法对开关的工作原理和性能进行了模拟与分析。结果表明,光开关良好的综合性能,而整个开关的长度只有7mm。  相似文献   

18.
赵同刚  柴淑玲  任建华   《电子器件》2007,30(4):1477-1480
作为自动交换光网络中的核心器件,全光波长转换器将在全光通信系统中发挥重要作用.根据光纤光栅外腔半导体激光器(FBG-ECL)实现波长转换的理论模型,重点研究了该波长转换器消光比特性,分析了工作电流、输入信号光功率、波长间隔对消光比的影响,并利用自行搭建的基于FBG-ECL实现波长转换的实验平台进行了实验分析,发现理论分析结果和实验数据是吻合的.这对于优化基于半导体激光器的全光波长转换器有重要参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号