首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various available beam theories, including the Euler–Bernoulli, Timoshenko, Reddy, and Levinson beam theories, are reformulated using the nonlocal differential constitutive relations of Eringen. The equations of motion of the nonlocal theories are derived, and variational statements in terms of the generalized displacements are presented. Analytical solutions of bending, vibration and buckling are presented using the nonlocal theories to bring out the effect of the nonlocal behavior on deflections, buckling loads, and natural frequencies. The theoretical development as well as numerical solutions presented herein should serve as references for nonlocal theories of beams, plates, and shells.  相似文献   

2.
The classical and shear deformation beam and plate theories are reformulated using the nonlocal differential constitutive relations of Eringen and the von Kármán nonlinear strains. The equations of equilibrium of the nonlocal beam theories are derived, and virtual work statements in terms of the generalized displacements are presented for use with the finite element model development. The governing equilibrium equations of the classical and first-order shear deformation theories of plates with the von Kármán nonlinearity are also formulated. The theoretical development presented herein should serve to obtain the finite element results and determine the effect of the geometric nonlinearity and nonlocal constitutive relations on bending response.  相似文献   

3.
The simple microfluid theory of Eringen [1] is generalized to include nonlocal effects. The balance laws, jump conditions, and constitutive equations are obtained. The nonlocal intermolecular forces, energy and entropy are accounted for by nonlocal field residuals and functional constitutive equations of space type. The second law of thermodynamics is used to obtain specific forms of these residuals, constitutive equations and restrictions to be imposed. The linear theory is developed fully for the micromorphic and micropolar nonlocal fluids. The nonlocal effects are shown to include surface tension and surface stresses. Passage is made to material gradient theories.  相似文献   

4.
The small scale effect on the vibration analysis of orthotropic single layered graphene sheets (SLGS) is studied. Elastic theory of the graphene sheets is reformulated using the nonlocal differential constitutive relations of Eringen. The equations of motion of the nonlocal theories are derived for the graphene sheets. Differential quadrature method (DQM) is employed to solve the governing differential equations for various boundary conditions. Nonlocal theories are employed to bring out the small scale effect of the nonlocal parameter on the natural frequencies of the orthotropic graphene sheets. Further, effects of (i) nonlocal parameter, (ii) size of the graphene sheets, (iii) material properties and (iv) boundary conditions on nondimensional vibration frequencies are investigated.  相似文献   

5.
A continuum theory of nonlocal polar bodies is developed. Both the micromorphic and the non-polar continuum theories are incorporated. The balance laws and jump conditions are given. By use of nonlocal thermodynamics and invariance under rigid motions, constitutive equations are obtained for the nonlinear micromorphic elastic solids. The special case, nonpolar, nonlocal elastic solids, is presented.  相似文献   

6.
Keivan Kiani 《Acta Mechanica》2011,216(1-4):165-195
The current work suggests mathematical models for the vibration of double-walled carbon nanotubes (DWCNTs) subjected to a moving nanoparticle by using nonlocal classical and shear deformable beam theories. The van der Waals interaction forces between atoms of the innermost and outermost tubes are modeled by an elastic layer. The equations of motion are derived for the nonlocal double body Euler?CBernoulli, Timoshenko and higher-order beams connected by a flexible layer under excitation of a moving nanoparticle. Analytical solutions of the problem are provided for the aforementioned nonlocal beam models with simply supported boundary conditions. The dynamical deflections and nonlocal bending moments of the innermost and outermost tubes are then obtained during the courses of excitation and free vibration. Finally, the critical velocities of the moving nanoparticle associated with the nonlocal beam theories are expressed in terms of small-scale effect parameter, geometry, and material properties of DWCNTs.  相似文献   

7.
A. Alibeigloo  M. Shaban 《Acta Mechanica》2013,224(7):1415-1427
This paper studies vibration behavior of single-walled carbon nanotubes based on three-dimensional theory of elasticity. To accounting for the size effect of carbon nanotubes, nonlocal theory is adopted to the shell model. The nonlocal parameter is incorporated into all constitutive equations in three dimensions. Governing differential equations of motion are reduced to the ordinary differential equations in thickness direction by using Fourier series expansion in axial and circumferential direction. The state equations obtained from constitutive relations and governing equations are solved analytically by making use of the state space method. A detailed parametric study is carried out to show the influences of the nonlocal parameter, thickness-to-radius ratio and length-to-radius ratio. Results reveal that excluding small-scale effects caused decreasing accuracy of natural frequencies. Furthermore, the obtained closed form solution can be used to assess the accuracy of conventional two-dimensional theories.  相似文献   

8.
In this work, we have developed a state-based peridynamics theory for nonlinear Reissener-Mindlin shells to model and predict large deformation of shell structures with thick wall. The nonlocal peridynamic theory of solids offers an integral formulation that is an alternative to traditional local continuum mechanics models based on partial differential equations. This formulation is applicable for solving the material failure problems involved in discontinuous displacement fields. The governing equations of the state-based peridynamic shell theory are derived based on the nonlocal balance laws by adopting the kinematic assumption of the Reissner and Mindlin plate and shell theories. In the numerical calculations, the stress points are employed to ensure the numerical stability. Several numerical examples are conducted to validate the nonlocal structure mechanics model and to verify the accuracy as well as the convergence of the proposed shell theory.  相似文献   

9.
In this paper, the small scale effect on the vibration analysis of orthotropic single layered graphene sheets embedded in elastic medium is studied. Elastic theory of the graphene sheets is reformulated using the nonlocal differential constitutive relations of Eringen. Both Winkler-type and Pasternak-type foundation models are employed to simulate the interaction between the graphene sheet and surrounding elastic medium. Using the principle of virtual work the governing differential equations are derived. Differential quadrature method is employed to solve the governing differential equations for various boundary conditions. Nonlocal theories are employed to bring out the small scale effect of the nonlocal parameter on the natural frequencies of the orthotropic graphene sheets embedded in elastic medium. Further, effects of (i) nonlocal parameter, (ii) size of the graphene sheets, (iii) stiffness of surrounding elastic medium and (iv) boundary conditions on non-dimensional vibration frequencies are investigated.  相似文献   

10.
Abstract

A unified nonlocal formulation is developed for the bending, buckling, and vibration analysis of nanobeams. Theoretical formulations of eighteen nonlocal beam theories are presented by using unified formulation. Small scale effect is considered based on the nonlocal differential constitutive relations of Eringen. The governing equations of motion and associated boundary conditions of the nanobeam are derived using Hamilton's principle. Closed form solutions are presented for a simply supported boundary condition using Navier's solution technique. Numerical results for axial and transverse shear stress are first time presented in this study which will serve as a benchmark for the future research.  相似文献   

11.
研究了一种空间-时间多尺度的方法,来分析周期性材料中非傅立叶热传导问题。计算模型是根据空间-时间尺度的高阶均匀化理论建立的,通过引入放大空间尺度和缩小时间尺度,研究了由空间非均匀性引起的非傅立叶热传导的波动效应和非局部效应。合并不同阶的均匀化非傅立叶热传导方程,消去缩小时间尺度参数,得到四阶微分方程。并进一步用C0连续修正了高阶非局部热传导方程的有限元近似解,使问题的求解避免了对有限元离散的C1连续性要求。给出的数值算例讨论了各种情况下方法的正确性与有效性。   相似文献   

12.
杨智春  邓庆田 《工程力学》2012,29(5):213-218,229
基于非局部弹性理论和Flügge壳理论,建立了充液双壁碳纳米管振动方程,计算了简支边界条件下碳纳米管的振动固有频率。用数值计算方法,分析了波数、几何参数和材料参数对振动频率的影响,并对比了局部和非局部弹性理论对结果的影响。结果表明,随着碳纳米管长度和半径的增大,振动频率逐渐减小;且随着小尺度参数的增大,频率也呈下降趋势。  相似文献   

13.
Small scale effects in the functionally graded beam are investigated by using various nonlocal higher-order shear deformation beam theories. The material properties of a beam are supposed to vary according to power law distribution of the volume fraction of the constituents. The nonlocal equilibrium equations are obtained and an exact solution is presented for vibration analysis of functionally graded (FG) nanobeams. The accuracy of the present model is discussed by comparing the results with previous studies and a parametric investigation is presented to study the effects of power law index, small-scale parameter, and aspect ratio on the vibrational behavior of FG nanostructures.  相似文献   

14.
In the present work, a finite element approach is developed for the static analysis of curved nanobeams using nonlocal elasticity beam theory based on Eringen formulation coupled with a higher-order shear deformation accounting for through-thickness stretching. The formulation is general in the sense that it can be used to compare the influence of different structural theories, through static and dynamic analyses of curved nanobeams. The governing equations derived here are solved introducing a 3-nodes beam element. The formulation is validated considering problems for which solutions are available. A comparative study is done here by different theories obtained through the formulation. The effects of various structural parameters such as thickness ratio, beam length, rise of the curved beam, loadings, boundary conditions, and nonlocal scale parameter are brought out on the static bending behaviors of curved nanobeams.  相似文献   

15.
Many experimental observations have shown that most nanostructures, such as carbon nanotubes, are often characterized by a certain degree of waviness along their axial direction. This geometrical imperfection has profound effects on the mechanical behavior of carbon nanotubes. In the present work, stability of a slightly curved carbon nanotube under lateral loading is investigated based on Eringen's nonlocal elasticity theory. Euler Bernoulli and Timoshenko beam theories are employed to obtain equilibrium equations. Winkler-Pasternak elastic foundation is used to approximate the effect of matrix. Effects of initial curvature, nonlocal parameter, beam length, and elastic foundation parameters on initiation of critical conditions are investigated.  相似文献   

16.
Mohammed Sobhy 《Acta Mechanica》2014,225(9):2521-2538
In the present study, the free vibration, mechanical buckling and thermal buckling analyses of multi-layered graphene sheets (MLGSs) are investigated. Eringen’s nonlocal elasticity equations are incorporated in new two-variable plate theories accounting for small-scale effects. The MLGSs are taken to be perfectly bonded to the surrounding medium. The governing differential equations of this model are solved analytically under various boundary conditions and taking into account the effect of van der Waals forces between adjacent layers. New functions for the displacements are proposed here to satisfy the different boundary conditions. Comparison of the results with those being in the open literature is made. This comparison illustrates that the present scheme yields very accurate results. Furthermore, the influences of nonlocal coefficient, moduli of the surrounding elastic medium and aspect ratio on the frequencies and buckling of the embedded MLGSs are examined.  相似文献   

17.
C. W. Lim  R. Xu 《Acta Mechanica》2012,223(4):789-809
Considering nanoscale size effects and based on the nonlocal elastic stress theory, this paper presents an analytical analysis with closed-form solutions for coupled tension and bending of nanobeam-columns subject to transverse loads and an axial force. Unlike previous studies where many nanomechanical models do not yield analytical solutions and hence the size effects are studied by molecular dynamics simulation or other numerical means, the nonlocal nanoscale effects at molecular level unavailable in classical mechanics are investigated analytically here and first-known closed-form analytical solutions are presented. New higher-order differential governing equations in both transverse and axial directions and the corresponding higher-order nonlocal boundary conditions for bending and tension of nanobeam-columns are derived based on the variational principle approach. Closed-form analytical solutions for deformation and tension are presented and their physical significance examined. Examples conclude that the nonlocal stress tends to significantly increase the stiffness of a nanobeam-column, which are contradictory to the current belief using the nonlocal analysis that structural stiffness should be reduced but consistent with many non-nonlocal analyses including the strain gradient and couple stress theories that stiffness should be enhanced. The relationship between bending deflection, axial tension and nanoscale is presented, and also its significance on stiffness enhancement with respect to the design of nanoelectromechanical systems.  相似文献   

18.
Axial buckling behavior of single-layered membranes from vertically aligned single-walled carbon nanotubes is studied in the context of the nonlocal continuum theory of Eringen. To this end, useful discrete models based on the nonlocal Rayleigh, Timoshenko, and higher-order beam theories are developed to evaluate critical buckling loads associated with both in-plane and out-of-plane buckling modes. In discrete models, the size of the eigenvalue equations to be solved drastically magnifies for highly populated membranes. Thereby, development of models whose computational efforts do not affected by the population of the membrane is of great advantageous. To bridge this scientific gap, appropriate nonlocal continuous models are established based on the developed discrete models. The accuracy of the proposed discrete and continuous models is checked and remarkable results are achieved. Subsequently, the roles of the influential factors on both in-plane and out-of-plane axial buckling loads are addressed. The obtained results can be regarded as a basic step in examining of axial buckling mechanisms of more complex systems consist of multi-layered membranes from parallel or even orthogonal single-walled carbon nanotubes.  相似文献   

19.
A class of higher-order continuum theories, such as modified couple stress, nonlocal elasticity, micropolar elasticity (Cosserat theory) and strain gradient elasticity has been recently employed to the mechanical modeling of micro- and nano-sized structures. In this article, however, we address stability problem of micro-sized beam based on the strain gradient elasticity and couple stress theories, firstly. Analytical solution of stability problem for axially loaded nano-sized beams based on strain gradient elasticity and modified couple stress theories are presented. Bernoulli–Euler beam theory is used for modeling. By using the variational principle, the governing equations for buckling and related boundary conditions are obtained in conjunctions with the strain gradient elasticity. Both end simply supported and cantilever boundary conditions are considered. The size effect on the critical buckling load is investigated.  相似文献   

20.
Summary A brief review of the main points of Eringen's theory of micromorphic bodies is first given, and balance equations for the linear isotropic micropolar and microstretch body are established. By appeal to the Fourier exponential transformation, nonlocal constitutive equations are derived, and assumptions with regard to the nonlocal moduli are made. The general field equations governing the propagation of a nonlocal surface wave are particularized so as to coincide with the results obtained directly in references [12], [17], [22], and [23], respectively. As an illustrative example, propagation of a microrotation and microstretch wave in a nonlocal medium in the entire Brillouin zone is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号