首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
声表面波NO_2传感器敏感膜研究进展   总被引:1,自引:0,他引:1  
由于工业检测、环境监测、医学监测等领域的需求,高性能NO2传感器得到了广泛的研究。声表面波传感器技术的发展为研发高灵敏度、高稳定性、响应快速、小型化的NO2传感器提供了极大的潜能。总结了近30年来声表面波NO2传感器敏感膜的研究现状,并根据现有的研究和传感器的应用需求,深入探讨了声表面波NO2传感器敏感膜面临的挑战和发展趋势。  相似文献   

2.
Unloaded ZnO and Nb/ZnO nanoparticles containing 0.25, 0.5 and 1 mol.% Nb were produced in a single step by flame-spray pyrolysis (FSP) technique. The nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The BET surface area (SSABET) of the nanoparticles was measured by nitrogen adsorption. FSP yielded small Nb particles attached to the surface of the supporting ZnO nanoparticles, indicating a high SSABET. The morphology and accurate size of the primary particles were further investigated by TEM. Nb/ZnO nanoparticles paste composed of ethyl cellulose and terpineol as binder and solvent respectively was coated on Al2O3 substrate interdigitated with gold electrodes to form thick films by spin coating technique. After the sensing tests, the morphology and the cross-section of sensing film were analyzed by SEM and EDS analyses. The influence on a low dynamic range of Nb concentration on NO2 response (0.1-4 ppm) of thick film sensor elements was studied at the operating temperatures ranging from 250 to 350 °C in the presence of dry air. The optimum Nb concentration was found be 0.5 mol.% and 0.5 mol.% Nb exhibited an optimum NO2 response of ∼1640 and a short response time (27 s) for NO2 concentration of 4 ppm at 300 °C.  相似文献   

3.
Epitaxially grown single layer and multi layer graphene on SiC devices were fabricated and compared for response towards NO2. Due to electron donation from SiC, single layer graphene is n-type with a very low carrier concentration. The choice of substrate is demonstrated to enable tailoring of the electronic properties of graphene, with a SiC substrate realising simple resistive devices tuned for extremely sensitive NO2 detection. The gas exposed uppermost layer of the multi layer device is screened from the SiC by the intermediate layers leading to a p-type nature with a higher concentration of charge carriers and therefore, a lower gas response. The single layer graphene device is thought to undergo an n-p transition upon exposure to increasing concentrations of NO2 indicated by a change in response direction. This transition is likely to be due to the transfer of electrons to NO2 making holes the majority carriers.  相似文献   

4.
The nitrogen dioxide (NO2) sensing capability of polypyrrole (PPy) was enhanced dramatically after functionalized with iron(III)phthalocyanine-4,4′,4″,4-tetrasulfonic acid monosodium salt (FePcTSA). The incorporated phthalocyanine was confirmed by different characterization techniques such as UV–vis spectroscopy, FTIR, GFAAS, EDAX, etc. The resistance of the functionalized PPy decreased spontaneously during exposure to NO2 gas at room temperature. This material exhibited excellent stability, reversibility, and reproducibility. The lowest response time (t50) thus obtained is 47 s with a highest response factor (ΔR/R0 × 100) of 50.25.  相似文献   

5.
A very sensitive, highly selective and reversible optical chemical sensor (optode) for mercury ion is described. The sensor is based on the interaction of Hg2+ with 2-mercapto-2-thiazoline (MTZ) in plasticized PVC membrane incorporating a proton-selective chromoionophore (ETH5294) and lipophilic anionic sites (sodium tetraphenylborate, NaTPB). The membranes were cast onto glass substrates and used for the determination of mercury ion in aqueous solutions by batch and flow-through methods. The sensor could be used in the range 2.0 × 10−10 to 1.5 × 10−5 M (0.04 ng mL−1 to 3 μg mL−1) Hg2+ with a detection limit of 5.0 × 10−11 M and a response time of <40 s. It can be easily and completely regenerated by dilute nitric acid solution. The sensor has been incorporated into a home-made flow-through cell for determination of mercury ion in flowing streams with improved sensitivity, precision and detection limit. The sensor showed excellent selectivity for Hg2+ with respect to several common alkali, alkaline earth and transition metal ions. The results obtained for the determination of mercury ion in river water samples using the proposed optode was found to be comparable with the well-established cold-vapor atomic absorption method.  相似文献   

6.
Flexural In2O3 nanowires with high aspect ratios were synthesized via a hydrothermal–annealing route. The as-synthesized In2O3 nanowires had diameters of 30–50 nm and length up to several microns. Various reaction parameters, such as the kind of reagents, the time of hydrothermal treatment, annealing time and annealing temperature, were investigated by a series of control experiments. The as-synthesized In2O3 nanowires showed excellent gas-sensing properties to NO2 in terms of sensor response and selectivity.  相似文献   

7.
A CO2 sensor based upon a continuous-wave thermoelectrically-cooled distributed feedback quantum cascade laser operating between 2305 and 2310 cm−1 and a 54.2 cm long optical cell has been developed. Two approaches for direct absorption spectroscopy have been evaluated and applied for monitoring of the CO2 concentration in gas lines and ambient laboratory air. In the first approach optical transmittance was derived from the single channel laser intensity, whilst in the second approach a ratio of signal and reference laser intensities (balanced detection) was used. The optimum residual absorption standard deviation was estimated to be 1.9 × 10−4 for 100 averages of 1 ms duration and 0.1 cm−1 scans over the P(46) CO2 absorption line of the ν3 vibrational band at 2306.926 cm−1. A CO2 detection limit (1 standard deviation) of 36 ppb was estimated for 0.1 s average and balanced detection.  相似文献   

8.
Zinc oxide (ZnO) is a well-known semiconducting multifunctional material wherein properties right from the morphology to gas sensitivity can be tailor-made by doping or surface modification. Aluminum (Al)-incorporated porous zinc oxide (Al:ZnO) exhibits good response towards NO2 at low-operating temperature. The NO2 gas concentration as low as 20 ppm exhibits S = 17% for 5 wt.% Al-incorporated ZnO. The NO2 response increases with operating temperature and concentration and reaches to its maximum at 300 °C without any interference from other gases such as SO3, HCl, LPG and alcohol. Physico-chemical characterization likes differential thermogravimetric analysis (TG-DTA) electron paramagnetic resonance (EPR) and diffused reflectance spectroscopy (DRS) have been used to understand the sensing behavior for pure and Al-incorporated ZnO. The TG-DTA depicts formation of ZnO phase at 287 °C. The EPR study reveals distinct variation for O (g = 2.003) and Zn interstitial (g = 1.98) defect sites in pure and Al:ZnO. The DRS studies elucidate signature of adsorbed NOx species in aluminium-incorporated zinc oxide indicating its tendency to adsorb these species even at low temperatures. This paper is an attempt to correlate the gas sensing behavior with the physico-chemical studies such as EPR and DRS.  相似文献   

9.
A novel Ni2+ optode was prepared by covalent immobilization of thionine, 3,7-diamine-5-phenothiazoniom thionineacetate, in a transparent agarose membrane. Influences of various experimental parameters on Ni2+ sensing, including the reaction time, the solution pH and the concentration of reagents were investigated. Under the optimized conditions, a linear response was obtained for Ni2+ concentrations ranging from 1.00 × 10−10 to 1.00 × 10−7 mol l−1 with an R2 value of 0.9985. The detection limit (3σ) of the method for Ni2+ was 9.30 × 10−11 mol l−1. The influence of several potentially interfering ions such as Ag+, Hg2+, Cd2+, Zn2+, Pb2+, Cu2+, Mn2+, Co3+, Cr3+, Al3+ and Fe3+ on the determination of Ni2+ was studied and no significant interference was observed. The membrane showed a good durability and short response time with no evidence of reagent leaching. The membrane was successfully applied for the determination of Ni2+ in environmental water samples.  相似文献   

10.
D.  S.  H.-D.  I. 《Sensors and actuators. B, Chemical》2004,100(3):380-386
Influences of temperature and annealing on the electrical and sensing properties toward NO2 of tellurium based films were investigated. The annealing at temperatures more than 100 °C causes a sharp decrease both of electrical resistance and sensitivity of the films. SEM analyzes indicated that annealing induced structural evolution of the films, including growth of large crystals in the matrix. Temperature-dependent electrical conductivity is strongly affected by presence of an NO2 environment. The sensitivity toward NO2, being controlled by gas concentration, decreases with operating temperature increase. On the other hand, the increase of operating temperature leads to a reduction of response–recovery times.

The results are discussed taking into consideration the contributions of grain boundary as well as grain bulk and surface resistance to the total conductivity. It is assumed the surface, including grain boundary, hole-enriched region is formed as a result of dangling bond chalcogen’s lone-pair electron interaction. Chemisorption of NO2 molecules is accompanied by hole enrichment of the surface and grain boundary region, due to interaction of these molecules with lone-pair electrons.  相似文献   


11.
Tellurium tubular crystals were grown by direct thermal evaporation of tellurium metal in an inert atmosphere on quartz substrates at ambient pressure without employing any catalyst. Tellurium powder was evaporated by heating at 600 °C and was condensed at a substrate temperature of 300–350 °C in the downstream of argon gas at a flow rate of 100 mL/min. The structure and chemical composition of the as-synthesized samples were examined by X-ray diffraction analysis, scanning electron microscopy, energy-dispersive X-rays microanalysis and micro-Raman spectroscopy. Scanning electron microscopy images and X-ray diffraction patterns showed that the as-synthesized Te had a tubular single-crystalline morphology with a hexagonal cross-section. The Te microtubes were typically 0.5–6 mm long, 30–70 μm in external diameter, and 5–20 μm thick. NO2 gas-sensing properties of the Te microtubes at room temperature were also investigated. They showed a promising sensitivity and response towards tested gas.  相似文献   

12.
Hollow SnO2 spheres were prepared in dimethylfomamide (DMF) by controlled hydrolysis of SnCl2 using newly made carbon microspheres as templates. The phase composition and morphology of the material particles were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The gas sensing properties of sensors based on the hollow SnO2 spheres were investigated. It was found that the sensor exhibited good performances, characterized by high response, good selectivity and very short response time to dilute (C2H5)3N operating at 150 °C, especially, the response to 1 ppb (C2H5)3N attained 7.1 at 150 °C. It was noteworthy that the response to 0.1 ppm C2H5OH of the sensor was 2.7 at 250 °C.  相似文献   

13.
NO2 sensing properties of SnO2-based varistor-type sensors have been investigated in the temperature range of 400-650°C and in the NO2 concentration range of 15–30 ppm. Pure SnO2 exhibited a weak nonlinear IV characteristic in air, but clear nonlinearity in NO2 at 450°C. The breakdown voltage of SnO2 shifted to a high electric field upon exposure to NO2 and the magnitude of the shift was well correlated with NO2 concentration. Thus, SnO2 exhibited some sensitivity to NO2 as a varistor-type sensor. When SnO2 particles coated with a SiO2 thin film were used as a raw material for fabricating a varistor, the breakdown voltage in air was approximately the double that of pure SnO2 and the sensitivity to 15 ppm NO2 was enhanced slightly. However, the sensitivity to 30 ppm NO2 decreased. The Cr2O3-loading on SnO2 also led to an increase in the breakdown voltage in air, but the Cr2O3 addition was not effective for promoting the NO2 sensitivity under the present experimental conditions.  相似文献   

14.
The NO2 gas sensing characteristics of semiconductor type gas sensors with channels composed of necked ZnO nanoparticles (NPs) were investigated in this study. The heat treatment of the NPs at 400 °C led to their necking and coarsening. The response of the necked-NP-based sensors was as high as 100 when exposed to 0.2 ppm of NO2 at 200 °C. As the concentration of NO2 increased to 5 ppm, their response was enhanced to approximately 400. During the repeated injection of NO2 gas with a concentration of 0.4 ppm, the sensors exhibited stable response characteristics. Furthermore, the 90% response and recovery times of the gas sensor were as fast as 13 and 10 s, respectively. These observations indicate that the non-agglomerated necking of the NPs induced by the heat treatment significantly enhances the gas sensing characteristics of the NP-based gas sensors.  相似文献   

15.
A highly sensitive and fast responding CO sensor was fabricated from a sheet-like SnO2. The SnO sheets were prepared by a room temperature reaction between SnCl2, hydrazine and NaOH, and they were subsequently oxidized into SnO2 sheets at high temperature (600 °C). The morphology and size of the SnO2 sheets could be controlled during the formation of SnO, which influence the sensor response (Ra/Rg) and response time to a great extent. The sensor response of SnO nanosheets to 10 ppm CO was enhanced up to 2.34, and the 90% sensor response time could be reduced to 6 s, which are significantly higher and shorter than those of SnO2 powders (1.57 and 88 s), respectively. The realization of both a high sensitivity and rapid response were explained in terms of rapid gas diffusion onto the entire sensing surface due to the less-agglomerated and very thin structure of SnO2 nanosheets and the catalytic effect of Pt.  相似文献   

16.
The effects of the crystallographic orientation on the H2 gas sensing properties were investigated in highly oriented polycrystalline Pd-doped SnO2 films, which were obtained using rf magnetron sputtering of a Pd (0.5 wt%)-SnO2 target on various substrates (a-, m-, r-, and c-cut sapphire and quartz). All the films had a similar thickness (110 nm), root-mean-square (rms) roughness (1.3 nm), surface area, and chemical status (O, Sn, and Pd). However, the orientation of the films was strongly affected by the orientation of the substrates. The (1 0 1), (0 0 2), and (1 0 1) oriented films were grown on (a-cut), (m-cut), and (r-cut) Al2O3 substrates, respectively, and rather randomly oriented films were deposited on (0 0 0 1) (c-cut) Al2O3 and quartz substrates. In addition, the oriented Pd-doped SnO2 films were highly textured and had in-plane orientation relationships with the substrates similar to the epitaxial films. The (1 0 1) Pd-doped SnO2 films on and Al2O3 showed a considerably higher H2 sensitivity, and their gas response decreased with increasing sensing temperature (400–550 °C). The films deposited on and (0 0 0 1) Al2O3 showed the maximum sensitivity at 500 °C. The comparison of the H2 gas response between undoped and Pd-doped SnO2 films revealed that the Pd-doping shifted the optimum sensing temperature to a lower value instead of improving the gas sensitivity.  相似文献   

17.
The square-like WO3 nanosheets were synthesized by hydrothermal treatment of irregular WO3 nanosheets prepared through acidification of Na2WO4·2H2O. The obtained square-like and irregular WO3 nanosheets were characterized with field emission scanning electron microscopy, X-ray powder diffraction and transmission electron microscopy. The gas sensing properties of sensors based on as-prepared samples were investigated. The results indicated that both samples exhibited high response to NO2. The sensor based on square-like WO3 nanosheets exhibited remarkably enhanced response and faster response/recovery time for NO2 compared with that based on irregular nanosheets. Especially, the sensor based on square-like WO3 nanosheets could detect NO2 down to 40 ppb, which covered environmental standard. A possible reason for the influence of unique structure on the sensing properties of sensors based on square-like WO3 was proposed.  相似文献   

18.
Au-doped WO3-based sensor for NO2 detection at low operating temperature   总被引:1,自引:1,他引:0  
Pure and Au-doped WO3 powders for NO2 gas detection were prepared by a colloidal chemical method, and characterized via X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The NO2 sensing properties of the sensors based on pure and Au-doped WO3 powders were investigated by HW-30A gas sensing measurement. The results showed that the gas sensing properties of the doped WO3 sensors were superior to those of the undoped one. Especially, the 1.0 wt% Au-doped WO3 sensor possessed larger response, better selectivity, faster response/recovery and better longer term stability to NO2 than the others at relatively low operating temperature (150 °C).  相似文献   

19.
J.D.  A.  J.R.   《Sensors and actuators. B, Chemical》2009,142(1):179-184
The authors present an ab initio study of NO2 and SO2 chemisorption onto non-polar ZnO and ZnO surfaces with the aim of providing theoretical hints for further developments in gas sensors. From first principles calculations (DFT-GGA approximation), the most relevant surface reduction scenarios are analyzed and, subsequently, considered in the chemisorption study. First, calculations indicate that NO2 adsorbs avidly onto Zn surface atoms. This is compatible with the oxidizing character of NO2. Second, results also explain the sensor poisoning by SO2 adsorption (since this molecule competes with NO2 for the same adsorption sites) and indicate that poisoning can only be reverted at typical operation temperatures (T ≤ 700 °C) in the case of stoichiometric ZnO surfaces.  相似文献   

20.
F.  Y.  A.  S. 《Sensors and actuators. B, Chemical》2008,130(2):625-629
In our earlier study, we reported that at 300 °C, a 2.0 wt.% CeO2-doped SnO2 sensor is highly selective to ethanol in the presence of CO and CH4 gases [F. Pourfayaz, A. Khodadadi, Y. Mortazavi, S.S. Mohajerzadeh, CeO2 doped SnO2 sensor selective to ethanol in presence of CO, LPG and CH4, Sens. Actuators B 108 (2005) 172–176]. In the present investigation, we report the influence of ambient air humidity on the ethanol selective SnO2 sensor doped with 2.0 wt.% CeO2. Maximum response to ethanol occurs at 300 °C which decreases with the relative humidity. The relative humidity was changed from 0 to 80% for different ambient air temperatures of 30, 40 and 50 °C and the response of the sensor was monitored in a 250–450 °C temperature range. As the relative humidity in 50 °C air increased from 0 to 30%, a 15% reduction in the maximum response to ethanol was observed. A further increase in the relative humidity no longer reduced the response significantly. The presence of humidity improved the sensor response to both CO and CH4 up to 350 °C after which the extent of improvement became smaller and at 450 °C was almost diminished. The sensor is shown to be quite selective to ethanol in the presence of humid air containing CO and CH4. The selectivity passes a maximum at 300 °C; however it declines at higher operating temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号