首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was to investigate the effect of nanocellulose (cellulose nanocrystals [NCC]) addition to urea-formaldehyde (UF) resin on the properties of plywood and the possibility of reducing resin spread rate in plywood production. The studies have shown the increase in viscosity of experimental adhesive mixture in comparison with reference one. On the basis of the bonding quality results, it was concluded that the NCC-reinforcement led to significant improvement in bonding quality of plywood. Moreover, values of bending strength (modulus of rupture) and modulus of elasticity also increased because of the cellulosic nanoparticles introduction. The positive effect of NCC addition on the properties of plywood allowed the reduction of resin spread rate by 50 g/m2 and maintaining equally good strength as reference panels. The modification with nanocellulose itself did not lead to a decrease of free formaldehyde content. However, allowing the reduction of adhesive application led to a slight decrease in the amount of emitted formaldehyde.  相似文献   

2.
The study investigated the use of tobacco (Nicotiana tabacum L) stalk particles as additive with both extender and filler property in urea formaldehyde adhesive formulation used to bond Paraserianthes falcataria (L) Nielsen veneers into plywood. The effect of varying amount of tobacco stalk particles on adhesive working properties, shear strength and wood failure of 3-ply plywood was investigated. Adhesive mix containing urea formaldehyde resin with tobacco stalk particles up to 8% by mass blended very well and remained stable for atleast 1?hour. An increase or no significant effect on shear strength and wood failure up to 8% tobacco stalk loading was observed compared to plywood that used a commercial glue formulation. Based on shear strength and wood failure, panels containing 4–8% tobacco stalk particles would pass the requirements of ISO 12466-2. Examination of adhesive penetration and plywood strength suggest that tobacco particles could function as both filler and extender. Tobacco stalk particles offer an environmentally friendly, low cost, strong and non-abrasive alternative to conventional fibers used in plywood production.  相似文献   

3.
A brominated phenol–formaldehyde resin was investigated as a plywood adhesive to study the effect of bromine on the physical and flammability properties of this resin. The results of these studies showed that brominated phenol–formaldehyde resin of 10% bromine content by weight of the phenol–formaldehyde resin was suitable to be used as a plywood adhesive. The optimal compressing temperature and compressing time were 110°C and 30 min, respectively. The prepared plywood obtained from the optimal condition gave a high shear strength, good flame retardancy, and good resistance to both hot and cold water. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1918–1924, 2003  相似文献   

4.
The aim of this work is to evaluate performances of tannin-based resins designed as adhesive in the plywood production. For this purpose, a part of phenol formaldehyde (PF) and melamine formaldehyde (MF) in the classic adhesive formulation was replaced by tannin. The physical properties of the formulated resins (rheological characterization, etc.) were measured. In order to analyze the mechanical performance of tannin-based resins, plywood panels were produced and the mechanical properties including tensile strength wood failure and three-point bending strength were investigated. The performance of these panels is comparable to those of plywood panels made by commercial PF and MF. The results showed that the plywood panels bonded with tannin–PF (PFT) and tannin–MF (MFT) resins exhibited better mechanical properties in comparison to the plywood panels made of commercials PF and MF. The introduction of small properties of tannin in PF and MF resins contribute to the improvement of the water performance of these adhesives. The formaldehyde emission levels obtained from panels bonded with tannin-based resins were lower than those obtained from panels bonded with control PF and MF. Although there are no actual reaction at all between PF, MF, and tannin, addition of tannin significantly improves the water resistance of PF and MF resins. This is a novel finding that manifests the possibility of replacing a convention PF and MF resins by tannin. Modified adhesive is one of the goals in the plywood production without changing any of their production conditions with improvement to their overall properties.  相似文献   

5.
To lower the formaldehyde emission of wood‐based composite panels bonded with urea–formaldehyde (UF) resin adhesive, this study investigated the influence of acrylamide copolymerization of UF resin adhesives to their chemical structure and performance such as formaldehyde emission, adhesion strength, and mechanical properties of plywood. The acrylamide‐copolymerized UF resin adhesives dramatically reduced the formaldehyde emission of plywood. The 13C‐NMR spectra indicated that the acrylamide has been copolymerized by reacting with either methylene glycol remained or methylol group of UF resin, which subsequently contributed in lowering the formaldehyde emission. In addition, an optimum level for the acrylamide for the copolymerization of UF resin adhesives was determined as 1%, when the formaldehyde emission and adhesion strength of plywood were taken into consideration. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
To reduce the formaldehyde/TVOC emissions from plywood with melamine–urea–formaldehyde (MUF) resin, four heat treatment procedures were designed and applied. Five‐ply plywood was fabricated, and its formaldehyde/TVOC emissions and wet shear strength were tested. Results showed that a simple low/no pressure post heat treatment procedure was effective and practical to decrease the formaldehyde/TVOC emissions from plywood. This was attributed to completely cured of MUF resin, the breakage of unstable chemical bonds, the acceleration of free formaldehyde releasing, and the exposed surface of the plywood. Meanwhile, this process also balanced the interior force of the resultant plywood and improved its wet shear strength. Under a 12 h oven heat treatment procedure after hot press, the formaldehyde and TVOC emissions from plywood decreased to 0.020 and 0.036 ppm, respectively, while the surface and core layer wet shear strength of plywood was improved to 1.24 and 1.08 MPa. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44909.  相似文献   

7.
In this study we investigated the effects of using four additives, wheat flour (WF), tannin, rice husk (RH) and charcoal, to melamine-formaldehyde (MF) resin for decorative veneer and base plywood in engineered flooring in order to reduce the formaldehyde emission levels and improve the adhesion properties. We determined the effects of variations in hot-press time, temperature and pressure on the bonding strength and formaldehyde emission. Blends of various MF resin/additive compositions were prepared. To determine and compare the effects of the additives, seven MF resin blends were prepared with the four different additives: four with a wt ratio of 8:2 (MF/WF, MF/tannin, MF/RH and MF/charcoal), and three in the wt ratio of 8:1:1 (MF/WF/tannin, MF/WF/RH and MF/WF/charcoal). The desiccator and perforator methods were used to determine the level of formaldehyde emission. The formaldehyde emission level decreased with all additives, except for RH. At a charcoal addition of only 20%, the formaldehyde emission level was reduced to nearly 0.1 mg/l. Curing of the high WF and tannin content in this adhesive system was well processed, as indicated by the increased lap-shear strength. In the case of WF, the lap shear strength was much lower due to the already high temperature of 130°C. The adhesive layer was broken when exposed to high temperature for extended time. In addition, both WF and tannin showed good mechanical properties. With increasing WF or tannin content, the initial adhesion strength increased. The MF resin samples with 20% added tannin or WF showed both good lap shear and initial adhesion strengths compared to the pure MF resin.  相似文献   

8.
Soybean meal flour, polyethylene glycol (PEG), sodium hydroxide (NaOH), and a melamine-urea-formaldehyde (MUF) resin were used to formulate soybean meal/MUF resin adhesive. Effects of the adhesive components on the water resistance and formaldehyde emission were measured on three-ply plywood. The viscosity and solid content of the different adhesive formulations were measured. The functional groups of the cured adhesives were evaluated. The results showed that the wet shear strength of plywood bonded by soybean meal/NaOH adhesive increased by 33% to 0.61 MPa after adding NaOH into the adhesive formulation. Addition of PEG reduced the viscosity of the soybean meal/NaOH/PEG adhesive by 91% to 34,489 cP. By using the MUF resin, the solid content of the soybean meal/MUF resin adhesive was improved to 39.2%, the viscosity of the adhesive was further reduced by 37% to 21,727 cP, and the wet shear strength of plywood bonded by the adhesive was increased to 0.95 MPa, which met the interior plywood requirements (≥0.7 MPa). The formaldehyde emission of plywood bonded by the soybean meal/MUF resin adhesive was obtained at 0.28 mg/L, which met the strictest requirement of the China National Standard (≤0.5 mg/L). FTIR showed using the MUF resin formed more  CH2 group in the cured adhesive. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
乳清蛋白是干酪加工过程中所产生的一种副产品,除被用作食品添加剂外,仍有相当数量乳清蛋白并未得到有效利用。为了实现乳清蛋白的高附加值利用,本文以乳清蛋白为原料,研制了具有良好耐久性和环保的乳清蛋白基胶合板用水性胶粘剂,并评价了变性处理、改性剂种类及其用量对乳清胶粘剂的胶合性能及游离甲醛释放量的影响。结果表明,热变性使乳清蛋白胶粘剂的胶接耐久性提高;不同改性剂对乳清蛋白胶粘剂的性能影响不同。采用1%多异氰酸酯改性胶接耐久性最好;采用0.15%戊二醛/1%乙二醛改性胶接强度最高。中试结果表明,所研制的耐水性环保乳清蛋白基胶合板胶粘剂的干胶接强度达到1.98MPa,煮-烘-煮28h后湿胶接强度为1.14MPa,游离甲醛释放量仅为0035mg/L(干燥器法),达到了1ISK6806--2003环保结构胶合板用胶粘剂要求。  相似文献   

10.
采用两次加碱一次回流法合成工艺代替一次法和两次碱法制备了酚醛树脂胶粘剂。对产物粘度,游离甲醛含量及固化物拉伸剪切强度测试,研究了酚醛比、催化剂加入量、反应温度、回流时间等对产物性能的影响。结果表明:苯酚与甲醛物质的量比1∶2,催化剂加入量为苯酚质量分数的25%,回流反应45 min可得到具有交联结构的酚醛树脂胶粘剂,产品分子质量及粘度适中,拉伸剪切强度可达到5 MPa以上,游离甲醛质量分数<0.03%,稳定性较好。  相似文献   

11.
Nanoclay is a natural mineral that has great potential as a reinforcing filler in wood adhesives. In order to investigate the reinforcing mechanism more clearly, the crystalline structure, chemical properties, morphology, and thermal stability of pure PF and organic nanoclay-reinforced phenol formaldehyde (PF-OMMT) adhesive were characterized. The comparative mechanical properties of pure PF adhesive and PF-OMMT in the bondlines of plywood were analyzed by nanoindentation (NI) under different service environments and the shear strain distribution on the interphase was also measured by a digital image correction technique (DIC). X-ray diffraction (XRD), Fourier transform infrared (FTIR) and transmission electron microscopy (TEM) results indicated good dispersion of the clay in the PF matrix. The modified adhesive showed greater thermal stability than did the control adhesive, as evaluated by thermo-gravimetric analysis (TGA). The good dispersion of nanoclay and the positive effects of the nanoclay on the adhesive's water and heat resistance may have contributed to the improved mechanical properties of adhesives in an accelerated durability test. Compared to pure PF, the reduced elastic modulus and hardness of PF-OMMT in the bondline increased significantly and the strain distribution was much more uniform, resulting in an observed increase of macro-bonding strength of plywood, especially under conditions of severe cyclic water saturation and drying.  相似文献   

12.
采用碱-酸-碱合成工艺,分段控制温度,分批加入尿素,加PVA改性,制备脲醛树脂胶黏剂。研究了n(F)/n(U)、反应温度、反应时间和PVA加入量对胶液甲醛含量和试样剪切强度的影响。结果表明:当n(F)/n(U)为1.4:1,反应温度为95℃,反应时间为70min,PVA加入1.0%时,制备的胶黏剂游离甲醛的含量降至0.1%以下,试样的剪切强度可达3.0MPa以上。  相似文献   

13.
三聚氰胺-尿素-甲醛共缩聚树脂胶粘剂的研制   总被引:1,自引:1,他引:0  
通过合成三聚氰胺-尿素-甲醛树脂(MUF)胶粘剂,探讨了三聚氰胺用量对该MUF胶粘剂耐水性和其它性能的影响。结果表明:随着三聚氰胺用量的增加,MUF胶粘剂的耐水性能提高、固含量增大、固化时间和储存期延长,并且胶合板剪切强度增大,但MUF胶粘剂中游离醛含量降低;当w(三聚氰胺)40%时,MUF胶粘剂性能提高并不明显,为了降低成本,选择w(三聚氰胺)=30%~40%时较适宜;三聚氰胺用量不同是影响MUF结构和基团含量的主要因素。  相似文献   

14.
纳米碳酸钙影响UF树脂性能的研究   总被引:4,自引:1,他引:4  
实验对纳米CaCO3对UF树脂固化时间,游离甲醛含量及胶合强度的影响进行研究,结果表明:纳米CaCO3延长了树脂的固化时间,游离甲醛含量随加入量的增加而逐渐减少,纳米CaCO3对胶合板的胶合强度贡献不大。  相似文献   

15.
In this study, a low‐cost diatomite was used to partly substitute wheat flour as one type of melamine–urea–formaldehyde (MUF) resin filler. Five‐ply plywood was fabricated, and its performance was measured. The crystallinity, fracture surface, and functional groups were tested to determine the effects of diatomite on the performance of the MUF resin. The results show that diatomite was well distributed in the MUF resin system and formed an embedding structure; this improved the wet shear strength of the resulting plywood by 33% to 1.36 MPa. Diatomite captured the free formaldehyde in the resin and the microporous structure formed in the resin accelerate formaldehyde release of the plywood. Consequently, the formaldehyde emission of the plywood was reduced. The diatomite partly replaced wheat flour as an MUF resin filler and could be applied in the plywood industry. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44095.  相似文献   

16.
基于改性橡子淀粉制备的UF胶粘剂用填料性能研究   总被引:2,自引:1,他引:1  
以改性橡子淀粉、茶叶废料粉和无机矿物粉组成的复合无机填料作为面粉的替代物,配制胶合板用脲醛树脂(UF)胶粘剂。着重探讨了复合无机填料的种类及含量对UF胶粘剂和胶合板的固化速率、预压性能、热稳定性能、胶合强度及其甲醛释放量等影响。结果表明:以复合无机填料替代面粉制成的胶合板用UF胶粘剂,具有预压性能良好、胶合板胶合强度更高且甲醛释放量更低等优点,其应用前景良好。  相似文献   

17.
The aim of this research was to investigate the effect of polymeric 4, 4 diphenyl methane diisocyanate (pMDI) on the physical and mechanical properties of plywood panels bonded with an ionic liquid (IL)-treated lignin-urea-formaldehyde resin. Soda lignin modified by 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) IL was added to a urea formaldehyde (UF) resin during resin synthesis to prepare a lignin-urea-formaldehyde (LUF) resin. pMDI at various contents (2, 4, and 6% on resin solids) was then added to prepare a LUF resin. The thermal and physicochemical properties of the resins prepared as well as the water absorption, shear strength, and formaldehyde emission of the plywood panels bonded with them were measured according to standard methods. DSC analysis indicated that the addition of pMDI decreases the gel onset and curing temperatures of the LUF resin. According to the results obtained, the addition of pMDI significantly increased the viscosity and solid content and accelerated the gelation time of LUF resins. Based on the findings of this research, the addition of pMDI dramatically improves the performance of LUF resins as a new adhesive for wood-based panels. The LUF resins with isocyanate added yielded panels presenting lower formaldehyde emission and lower water absorption content when compared to those bonded with the control LUF resins. Greater dry and wet shear strength can be obtained by a small addition of pMDI to LUF resins.  相似文献   

18.
茶叶废料在脲醛树脂中的应用研究   总被引:2,自引:0,他引:2  
将不同颗粒度的茶叶废料粉添加到脲醛树脂胶中,研究了茶叶废料的颗粒度、加入量等对脲醛树脂胶黏剂的游离甲醛含量、黏接胶合板的甲醛释放量及胶合强度的影响。实验结果表明,茶叶废料作为填料添加到脲醛树脂胶黏剂中,能够降低其游离甲醛含量以及其黏接胶合板的甲醛释放量;茶叶废料颗粒度越小,与脲醛树脂混合性越好,消除甲醛效果越显著;茶叶废料的适量加入不会降低胶合板胶合强度。  相似文献   

19.
人造板甲醛释放研究   总被引:1,自引:0,他引:1  
提出了一种脲醛树脂合成思路,并合成出游离甲醛含量高于0.3%的树脂。使用这种树脂压制的胶合板甲醛释放量在0.2mg/L以下,达到了日本2003年修订的JIS中F五星级要求。与按普通工艺合成的树脂对照,利用GPC、DSC等方法对树脂进行了分析,认为树脂发生固化时的固化程度更高,固化后形成的交联结构更加致密是制品低甲醛释放的主要原因。为脲醛树脂的生产、使用和研究人员控制制品的甲醛释放提供了一种可操作的方法。  相似文献   

20.
为了降低脲醛树脂的游离甲醛含量及其胶接制品的甲醛释放量,本研究在脲醛树脂合成过程中加入改性剂代替部分甲醛,通过尿素-甲醛-改性剂发生共缩聚反应,合成了改性脲醛树脂。研究了改性剂取代甲醛的摩尔比对改性脲醛树脂固化速度、游离甲醛含量的影响,以及在不同的热压条件下,对胶接胶合板的胶合强度和甲醛释放量的影响。研究结果表明,改性剂的加入不仅能有效降低改性脲醛树脂的游离甲醛含量及其胶合板的甲醛释放量,还能提高胶合板的胶合强度和耐水性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号