首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
What is the future of hydrogen (H2) produced from nuclear energy? Assuming that economically competitive nuclear H2 can be produced, production of H2 may become the primary use of nuclear energy and the basis for both a nuclear-H2 renewable (solar, wind, etc.) energy economy and a nuclear-H2 transport system. The technical and economic bases for these conclusions are described. In a nuclear-H2 renewable energy economy, nuclear energy is used to produce H2 that is stored and becomes the energy-storage component of the electrical generating system. The stored H2 replaces piles of coal and tanks of liquid fuel. Capital-intensive renewable energy sources and nuclear reactors produce electricity at their full capacity. The stored H2 is used in fuel cells to produce the highly variable quantities of electricity needed to fill the gap between the electricity demand by the customer and the electricity generated by the rest of the electrical generating system. Hydrogen is also used to produce the liquid or gaseous transport fuels. This energy-system architecture is a consequence of the fundamental differences between the characteristics of electricity (movement of electrons) and those of H2 (movement of atoms). Electricity can be generated, transformed, and used economically on either a small or a large scale. However, it is difficult to generate, store, and transform H2 economically on a small scale. This distinction favors the use of large-scale nuclear systems for H2 production.  相似文献   

2.
Energy resources are available in Indonesia but small per capita. The increase of oil price and its reserve depletion rate dictates to decrease the oil consumption. Therefore, it is imperative to increase the shares of other fossils as well as the new and renewable sources of energy in various energy sectors substituting the oil. The introduction of nuclear power plant becomes more indispensable, although the share is to be small but significantly important for electric generation in Java–Madura–Bali grid. Nuclear technology can have also important role enabling the increase of the shares of renewable, e.g. geothermal, hydro and bio-fuels as well as fossil energies to meet more sustainable energy mix sufficing the energy demand to attain intended economic and population growths while maintaining the environment. The first introduced nuclear power plant is to be the proven ones, but the innovative nuclear energy systems being developed by various countries will eventually also be partially employed to further improve the sustainability. The nuclear science and technology are to be symbiotic and synergistic to other sources of energy to enhance the sustainable supply of energy.  相似文献   

3.
Nuclear sources are not only covering more than 16% of today's electricity production but can also supply heat for district heating and industrial needs. Thus the nuclear generated heat substitutes for fossil fuels with good efficiency and economy and with much higher environmental cleanliness. Low-temperature nuclear heat is gained in several countries from the reactors of nuclear power plants by co-generation of heat and electricity which is already a proven technology. Specialized nuclear heating plants are in an early stage of development. The paper gives an overview of the situation worldwide and shows also specific common safety characteristics of these reactors.  相似文献   

4.
A study was made to analyze the potential of reducing CO2 emissions and to identify important energy and technology options in future energy systems of Japan. The energy market optimum allocation model MARKAL was used for the analysis with a time horizon from 1990 to 2050.

The analytical procedures were as follows. First, a reference energy system was established by incorporating all important energy sources, energy carriers, and energy technologies that existed already or that might be introduced during the above time horizon. Second, future demand for energy services was estimated based on the two economic growth scenarios, high and low. Also, assumptions were made about the evolution of imported fuel prices, availability of energy resources, and so on. Third, under the above assumptions, the optimum energy and technology options were selected by minimizing a discounted system cost under different carbon tax schemes, and thereby the potential of reducing CO2 emissions was analyzed.

The following results were obtained by the analysis. Without utilization of nuclear energy, the CO2 emissions can be hardly stabilized at the 1990 emission level even in the case of the low economic growth and large scale deployment of CO2 recovery and disposal assumed. A significant amount of fossil fuels will be used for power generation in order to meet the rapidly growing demand for electricity. Nuclear energy, by substituting fossil fuels for electric power generation, is expected to contribute to the reduction of CO2 emissions. In addition, the average cost of reducing the emissions will be substantially lowered compared with a non nuclear scenario.  相似文献   


5.
Global concern for increased energy demand, increased cost of natural gas and petroleum, energy security and environmental degradation are leading to heightened interest in using nuclear energy and hydrogen to leverage existing hydrocarbon reserves. The wasteful use of hydrocarbons can be minimised by using nuclear as a source of energy and water as a source of hydrogen. Virtually all hydrogen today is produced from fossil fuels, which give rise to CO2 emissions. Hydrogen can be cleanly produced from water (without CO2 pollution) by using nuclear energy to generate the required electricity and/or process heat to split the water molecule. Once the clean hydrogen has been produced, it can be used as feedstock to fuel cell technologies, or in the nearer term as feedstock to a coal-to-liquids process to produce cleaner synthetic liquid fuels. Clean liquid fuels from coal - using hydrogen generated from nuclear energy - is an intermediate step for using hydrogen to reduce pollution in the transport sector; simultaneously addressing energy security concerns. Several promising water-splitting technologies have been identified. Thermo-chemical water-splitting and high-temperature steam electrolysis technologies require process temperatures in the range of 850 °C and higher for the efficient production of hydrogen. The pebble bed modular reactor (PBMR), under development in South Africa, is ideally suited to generate both high-temperature process heat and electricity for the production of hydrogen. This paper will discuss South Africa's opportunity to maximise the use of its nuclear technology and national resources in a global hydrogen economy.  相似文献   

6.
The transportation sector consumes about a quarter of final energy in Japan and worldwide, and presently most of the energy is supplied by petroleum. For global environment and resources, it is important to seek possibilities of replacing a substantial part of the transportation energy by nuclear energy.

For supplying nuclear energy to the transportation sector, investigated are the paths through such ‘energy carriers’ as electricity, hydrogen and synthetic liquid fuels, to the means of transportation such as automobiles. These energy carriers can be produced from nuclear energy, by itself or synergistically with other primary energies like fossil fuels or biomass.

In this paper, possibilities and impacts of these energy carriers to power transportation means are reviewed, and measures and tasks to supply these energy carriers from nuclear energy are examined.

In converting the primary energies into the energy carriers, the synergistic process may be more advantageous than the individual process. Some of the exploratory processes to produce synthetic liquid fuels from fossil fuels and nuclear energy are presented.  相似文献   


7.
We present the role of nuclear energy in a sustainable future. This addresses the social, economic and environmental concerns of us all. Nuclear energy today avoids the emission of nearly two billion tonnes of greenhouse gases (GHGs) each year, thanks to over 400 reactors operating worldwide.

Nevertheless, there is no real recognition of real incentives for large-scale non-emitters like nuclear energy and for emissions avoidance in current Kyoto and other policies. These approaches rely heavily on conservation, renewables and efficiency. These measures alone also will not significantly reduce the atmospheric greenhouse burden, because the world is still growing. Also, our (the world's) future economic growth (in all countries) is tied to energy and electricity use. Our prosperity, the alleviation of poverty and the sustainability of the world depend on having a supply of emissions-free and safe energy.

Recent price hikes in fossil fuels and power blackouts also emphasize our need for reliable, safe and cheap power, as is offered by nuclear energy when coupled with effective and secure waste disposal.

A particularly important role for nuclear power in the future will be its links to the hydrogen economy. It is now recognised that the introduction of hydrogen into the transportation sector will benefit the environment only when low carbon sources, such as nuclear reactors, are the primary energy source for hydrogen production. The future could well be the Hydrogen Age. We show that a major reduction in GHGs worldwide can be obtained by nuclear-electric production of hydrogen, thus alleviating their potential effects on future generations. We also demonstrate a potential key synergism with renewable wind power in the hybrid production of distributed hydrogen. Thus, nuclear energy supports and enables the World in its journey to a sustainable, safe and secure energy future.  相似文献   


8.
Against fossil fuels, the nuclear energy is the only alternative energy source in the next century. Such energy source as the future nuclear power plant is expected to meet the following requirements. First, high temperature output for the multiple energy conversion capability as the electricity generation and the production of alternative fuels (hydrogen), which can be used widely in transportation systems. Second, the capability for siting close to the energy consumption area without onsite refueling. Third, the capability for nuclear fuel breeding and incineration of long-lived fission products, and fourth, the harmonization between active and passive safety features. This paper describes the basic concept of the Multipurpose liquid metallic-fueled Fast Reactor system (MPFR), which satisfies all mentioned requirements with introducing the U-Pu-x (x: Mn, Fe, Co) liquid metallic alloys for the fuel. We can obtain such characteristics as high operational temperature of the reactor (between 550 °C and 1200 °C) and elongation of the core operational lifetime by the inherent fission product separation in the liquid fuel by using these alloys. The enhanced self-controllability is achieved by the thermal expansion of liquid fuel; and the re-criticality phenomenon at the core compaction events can be eliminated by discharging of the liquid fuel from the core.  相似文献   

9.
21 世纪主要能源展望   总被引:6,自引:0,他引:6  
本文将讨论21世纪主要能源,它包括化石燃料能源,裂变能和聚变能。下世纪人类将进一步发展核能,核能比起化石燃料能源可以避免化石燃料对环境所造成的影响,裂变能在21世纪将变成更为重要的能源,聚变能从下世纪中叶开始将提供商业发电,它将为人类提供未来能源的最佳选择。  相似文献   

10.
Future plans for energy production in the European Union as well as other locations call for a high penetration of renewable technologies (20% by 2020, and higher after 2020). The remaining energy requirements will be met by fossil fuels and nuclear energy. Smaller, less-capital intensive nuclear reactors are emerging as an alternative to fossil fuel and large nuclear systems. Approximately 50 small (<300 MWe) to medium-sized (<700 MWe) reactors (SMRs) concepts are being pursued for use in electricity and cogeneration (combined heat and power) markets. However, many of the SMRs are at the early design stage and full data needed for economic analysis or market assessment is not yet available. Therefore, the purpose of this study is to develop “target cost” estimates for reactors deployed in a range of competitive market situations (electricity prices ranging from 45-150 €/MWh). Parametric analysis was used to develop a cost breakdown for reactors that can compete against future natural gas and coal (with/without carbon capture) and large nuclear systems. Sensitivity analysis was performed to understand the impacts on competitiveness from key cost variables. This study suggests that SMRs may effectively compete in future electricity markets if their capital costs are controlled, favorable financing is obtained, and reactor capacity factors match those of current light water reactors. This methodology can be extended to cogeneration markets supporting a range of process heat applications.  相似文献   

11.
《Annals of Nuclear Energy》2001,28(17):1717-1732
The safety characteristics of a long-life multipurpose nuclear reactor (MPFR) with self-sustained liquid metallic fuel and lead coolant, which is proposed to meet the requirements for the energy production in the future, were investigated. The application of liquid plutonium–uranium metallic alloys used as a nuclear fuel demonstrated high potential to reach excellent reactor shutdown characteristics against anticipated transients without scram such as unprotected loss-of-flow and unprotected transient overpower. The calculations indicated that the thermal expansion of liquid fuels would cause the negative reactivity insertion that would be larger in magnitude than any other thermally induced reactivity changes. This created the reactivity balance for the passive shutdown and power stabilization capabilities of the MPFR core. It was found that MPFR satisfies such design characteristics to be a potential candidate providing the replacement of fossil fuels by alternative energy sources in the next century.  相似文献   

12.
In view of the potential consequences of the greenhouse effect, it is important to restrain consumption of fossil fuels by exploiting conservation, solar power, and nuclear power. The pressure on developing countries for increased energy consumption makes reduction of fossil fuel use in the industrialized countries all the more important. Nuclear power already has had a significant impact. Primarily through its use. France reduced carbon dioxide emissions by 24% from 1973 to 1986. Given a vigorous program of nuclear power development, electrification, and conservation, one can envisage a U.S. energy economy in which CO2 production is halved. Standardized reactors, of small or medium size, may enhance the prospects for a nuclear renaissance in industrialized countries, and may be well matched to the needs of developing countries.  相似文献   

13.
The world demand for energy is growing rapidly, particularly in developing countries that are trying to raise the standard of living for billions of people, many of whom do not have access to electricity or clean water. Climate change and the concern for increased emissions of green house gases have brought into question the future primary reliance of fossil fuels. With the projected worldwide increase in energy demand, concern for the environmental impact of carbon emissions, and the recent price volatility of fossil fuels, nuclear energy is undergoing a rapid resurgence. This “nuclear renaissance” is broad based, reaching across Asia, North America, Europe, as well as selected countries in Africa and South America. Many countries have publicly expressed their intentions to pursue the construction of new nuclear energy plants. Some countries that have previously turned away from commercial nuclear energy are reconsidering the advisability of this decision. This renaissance is facilitated by the availability of more advanced reactor designs than are operating today, with improved safety, economy, and operations.One such design, the Westinghouse AP1000 advanced passive plant, has been a long time in the making! The development of this passive technology started over two decades ago from an embryonic belief that a new approach to design was needed to spawn a nuclear renaissance. The principal challenges were seen as ensuring reactor safety by requiring less reliance on operator actions and overcoming the high plant capital cost of nuclear energy. The AP1000 design is based on the use of innovative passive technology and modular construction, which require significantly less equipment and commodities that facilitate a more rapid construction schedule. Because Westinghouse had the vision and the perseverance to continue the development of this passive technology, the AP1000 design is ready to meet today's challenge of near-term deployment.  相似文献   

14.
The High Temperature Reactor HTR offers beside the production of electricity the potential of the production of secondary energy carriers for the fuel and heat market. Therefore the HTR can considerably contribute to solutions of future problems in the energy supply of the Federal Republic of Germany as well as of the world. On the basis of the experiences with the power plants AVR, Fort St. Vrain and THTR-300 new concepts of reactors have been proposed: the medium size reactor HTR 500 and the Modular HTR concept. The high temperature heat application is directed towards the refinement of fossil fuels, the long distance energy system and other applications as e.g. process steam for chemical industry, enhanced oil recovery and water splitting. The research and development program in the projects Prototype Plant Nuclear Process Heat (PNP) and Nuclear Long Distance Energy (NFE) has shown very promising results. These results show that nuclear process heat is technically feasibly and that it is possible to reach a commercial application in the next decades.  相似文献   

15.
In this study quantitative analyses are made to clarify the possible roles of S-HTGRs (Small-sized modular High Temperature Gas-cooled Reactors) in our future energy systems. The results obtained show the good possibility of S-HTGRs to compete economically with L-HTGRs (Large-sized HTGR) taking into account the effects of modularization, learning, mass production, and simplification of safety systems. In the electricity market, S-HTGRs can well compete with coal steam electric power and LWR electric power if they are located close to demand areas. In addition the high temperature nuclear heat from small-sized modular gas-cooled reactors has the potential of contributing to reduce the amount of imported fossil fuels and also SO2, NOx, and CO2 emissions.  相似文献   

16.
Energy for electricity and transportation is a national issue with worldwide environmental and political implications. The world must have energy options for the next century that are not vulnerable to possible disruption for technical, environmental, public confidence, or other reasons. Growing concerns about the greenhouse effect and the safety of transporting oil may lead to reduced burning of coal and other fossil fuels, and the incidents at Three Mile Island and Chernobyl, as well as nuclear waste storage problems, have eroded public acceptance of nuclear fission. Meeting future world energy needs will require improvements in energy efficiency and conservation. However, the world will soon need new central station power plants and increasing amounts of fuel for the transportation sector. The use of fossil fuels, and possibly even fission power, will very likely be restricted because of environmental, safety, and, eventually, supply considerations. Time is running out for policymakers. New energy technologies cannot be brought to the marketplace overnight. Decades are required to bring a new energy production technology from conception to full market penetration. With the added urgency to mitigate deleterious environmental effects of energy use, policymakers must act decisively now to establish and support vigorous energy technology development programs. The U.S. has invested $8 billion over the past 40 years in fusion research and development. If the U.S. fusion program proceeds according to its present strategy, an additional 40 years, and more money, will be expended before fusion will provide commercial electricity. Such an extended schedule is neither cost-effective nor technically necessary. It is time to launch a national venture to construct and operate a fusion power pilot plant. Such a plant could be operational within 15 years of a national commitment to proceed.Prepared Under Contract for the Agency for Advancement of Fusion Power, Inc., George S. Clemens, President.  相似文献   

17.
The United Nation's Intergovernmental Panel on Climate Change (IPCC) review of global warming issues suggests man's activities have resulted in a discemible influence on global climate. The panel identifies options which could be employed to ameliorate the climate influencing greenhouse effect which is attributed primarily to carbon dioxide and other gaseous emissions from fossil fuel energy sources. One option identified is nuclear power, as an alternative energy source which would reduce these emissions. The panel observes that, although nuclear power is a relatively greenhouse gas free energy source, there are a number of issues related to it's use which are slowing it's deployment. This paper enumerates the issues raised by the IPCC and addresses each in turn in the context of CANDU reactors and sustainable development. It is concluded that the issues are not fundamental barriers to expanded installation of nuclear fission energy systems. Nuclear reactors, and CANDU reactors in particular, can meet the energy needs of current generations while enhancing the technological base which will allow future generations to meet their energy needs. The essential requirements of a sustainable system are thus met.  相似文献   

18.
This paper reviews some of the national policies and regulatory decisions that have the potential to affect the production of electricity from nuclear power. It is shown that many policies and regulatory initiatives are introduced to meet objectives other than determining the mix of electricity supply resources, such as reducing the cost of electricity or protecting public health and safety. Nevertheless, such policies and requirements can have a substantial effect on the competitiveness of present nuclear power plants, as well as on prospects for future nuclear power plants. Because electricity from nuclear power can substitute for electricity from fossil fuels, policies and regulations which affect the competitiveness of nuclear power can have an effect of the production of carbon emissions, and therefore can compete with, or complement, national environmental objectives.  相似文献   

19.
In broad terms it is estimated that the world will need 17 TW of additional primary energy to meet its needs by 2050. Much of this growth in energy demand will take place in developing countries. Wind, biomass, solar, nuclear and coal will all compete to fill this gap as oil market share declines. Economics, environmental issues, and public acceptance elements of sustainable development goals will be as important as the engineering issues of efficiency and reliability in this competition.

Nuclear power is increasingly recognized as a principal contender to provide economic, “carbon free” electricity for the grid, but it does not directly provide a transportation fuel as flexible as is gasoline. Nuclear-produced hydrogen might help to fill this transportation fuel gap. This presentation will discuss the processes for manufacture of hydrogen from nuclear heat, and the integration of nuclear-produced hydrogen into the transportation fuel system – in part via synergies with traditional oil, natural gas and coal, and/or synergies with nontraditional shale and tar sands. We will discuss the nuclear hydrogen system as we expect it to appear in 2050 and will discuss some of processes that will provide a pathway to creating that system.  相似文献   


20.
Hydrogen as an energy carrier will play a considerable role in the future structure of energy production when nuclear reactors will replace fossil fuels. Investigations performed in recent years have shown that the production of large quantities of energy with high efficiency can be accomplished on the basis of thermochemical cycles using reactors with coolant temperature at the exit from the core of about 900°C. A variant of such a fast reactor with sodium as the coolant is proposed. The main physical characteristics and the main problems which must be solved to build such a reactor are presented. According to its properties, this reactor will meet the modern requirements for nuclear and radiation safety. It can also be used in other promising high-temperature technologies, for example, high-efficiency production of electricity. Deceased. (V. B. Bogush) Translated from Atomnaya énergiya, Vol. 106, No. 3, pp. 129–134, March, 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号