首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this study, bone like continuously porous TCP/TCP-(t-ZrO2)/t-ZrO2 composites with a central channel were fabricated using a multi-pass extrusion process and their mechanical properties and microstructure at different sintering temperatures were investigated. Hydroxyapatite (HAp) powder was used as the raw powder which undergoes a phase transformation into the α-tricalcium phosphate phase (α-TCP) at a sintering temperature of 1500 °C. The external diameter and inside cylindrical hollow core were approximately 10.3 mm and 4.8 mm, respectively. The frame region contained numerous microchannels that extended from one side of the fabricated body to the other. The channeled frame region had a multi-layer microstructure with a TCP/TCP-(t-ZrO2)/t-ZrO2 layer configuration. The inner layer consisted of TCP, which make the wall of the microchannel. The material properties were characterized and microstructural analysis was carried out. The maximum pore size, compressive strength, and relative density of the fabricated system were approximately 86 μm, 53 MPa, and 77% when sintered at 1500 °C. The composites exhibited excellent biocompatibility and cell proliferation behavior resulted in the MTT assay and cell adhesion test using osteoblast-like MG-63 cells.  相似文献   

2.
This paper presents the results of tensile mechanical properties of FRP reinforcement bars, used as internal reinforcement in concrete structures, at elevated temperatures. Detailed experimental studies were conducted to determine the strength and stiffness properties of FRP bars at elevated temperatures. Two types of FRP bars namely: carbon fibre reinforced polyester bars of 9.5 mm diameter and glass fibre reinforced polyester bars of 9.5 mm and 12.7 mm diameter were considered. For comparison, conventional steel reinforcement bars of 10 mm and 15 mm diameter were also tested. Data from the experiments was used to illustrate the comparative variation of tensile strength and stiffness of different types of FRP reinforcing bars with traditional steel reinforcing bars. Also, results from the strength tests were used to show that temperatures of about 325 °C and 250 °C appear to be critical (in terms of strength) for GFRP and CFRP reinforcing bars, respectively. A case study is presented to illustrate the application of critical temperatures for evaluating the fire performance of FRP-reinforced concrete slabs.  相似文献   

3.
Deep drawing experiments have been performed in order to study formability of Ti–6Al–4V alloy sheet at temperature ranging from room temperature to 400 °C. It is found that below 150 °C, formability of the material is very poor and above 150 °C till 400 °C, limiting drawing ratio (LDR) is found to be 1.8 which is substantially lesser than other structural alloys. For better understanding of failures in failed cups, failure regions have been identified in neck and wall which are validated using finite element (FE) simulations. Fractured surface has been examined with scanning electron microscope (SEM) which reveals different types of shallow dimples indicating predominantly ductile failure. Additionally, in the properly drawn cups, thickness distribution has been studied over a temperature range of 150–400 °C and blank diameter 50–54 mm. In order to optimize blank diameter and temperature to obtain uniform thickness distribution of drawn cups, artificial neural network (ANN) and genetic algorithm (GA) have been employed. Thickness distribution for optimized parameters is validated using FE simulation.  相似文献   

4.
《Composites Part A》2002,33(2):147-154
This paper describes the moisture absorption of glass/epoxy panels and tubes produced by filament winding. Panels have been immersed in distilled water for up to 10 years at temperatures up to 60°C to establish baseline data. Tubes of the same material were wound at ±55° to the tube axis with two diameters, 60 and 150 mm. These were also immersed in water and lower absorption levels were measured than in panels. Another series of tubes was subjected to internal and external water contact and it was established for both tube diameters that virtually no water enters through the inner wall. Reasons for this apparent internal barrier effect are examined.  相似文献   

5.
Hollow particles have attracted considerable attention owing to their unique properties. In this work, hollow zirconia particles were synthesized using rod-shaped gram-negative bacteria, Escherichia coli, as templates. A zirconia precursor, generated by the hydrolysis of zirconium butoxide, was deposited on the surface of the bacterial cells to form the shell of the hollow particles. The as-synthesized particles had the morphology of the bacterial templates, and were about 1.7 μm long and 0.8 μm across. The bacterial templates could be removed by calcination at 800 °C. The particles shrank on calcination to a final size of about 1.0 μm long and 0.4 μm across, with a wall thickness of about 69 nm. The specific surface area and average pore diameter were 45.7 m2/g and 1.9 nm, respectively. When fixed cells without internal water were used as templates, no hollow particles were observed; this implies that the internal water inside the cells acted as the initiator for the hydrolysis of zirconium butoxide.  相似文献   

6.
Hydrogel capsules in which shell was composed of thermoresponsive interpenetrating polymer network (IPN) of crosslinked poly(N-isopropylacrylamide) (PNIAPM) and calcium alginate, were prepared using concentric two-fluid nozzles. To introduce different amount of PNIPAM into the capsule shell, the concentrations of the NIPAM monomer and the polymerization initiator were changed in a wide range and the characteristics of the resulting capsules were evaluated. Spherical and uniformly sized capsules were obtained under all conditions. Elemental analyses showed that the PNIPAM/alginate weight ratio increased with the increase of initial concentrations of NIPAM monomer and polymerization initiator and was proportional to the initial rate of polymerization. In addition, the thermoresponsive properties of IPN hydrogel capsule were measured at temperatures from 10 °C to 50 °C and the thermoresponsive volume change ratio was expressed as a function of the PNIPAM/alginate weight ratio raised to a power. From these results, the relationship between the experimental conditions and the amount of PNIPAM in the capsule shell was clarified, and it indicated the magnitude of volume change of IPN hydrogel capsules can be controlled by introducing the desired amount of PNIPAM in the capsules.  相似文献   

7.
In this study, effects of position, diameter (5, 6, 7, 8 mm) and angle (30°–180°) of a mobile plug, located at the hot outlet side in a Ranque–Hilsch Vortex Tube (RHVT), were determined experimentally for best performance. In addition to plug parameters, effects of supply pressure (200–420 kPa) and number of nozzles (2, 4, 6) were also studied. The internal diameter (D) of the vortex tube used in the experiments was 9 mm; the ratio of the length of the vortex tube to its diameter (L/D) was 15. Four different plug locations were studied. The maximum difference in the temperatures of hot and cold streams was obtained for the plug diameter of 5 mm, tip angles of 30° and 60°, 4 nozzles and by keeping the plug location at the far extreme end.  相似文献   

8.
The influences of strain amplitude (10?5–10?4) and temperature (25 °C–500 °C) on the internal friction of a cold-drawn and solution treated Fe-19Mn alloy were investigated. The internal friction was measured using reversal torsion pendulum and multifunction internal friction equipment. The microstructure was observed using scanning electron microscopy. The phase transformation temperatures were determined using differential scanning calorimetry. The results indicated that the internal friction of the solution treated alloy was related to strain amplitude, which could be explained using the movement of Shockley partial dislocations (bowing out and breaking away). But the internal friction of the cold-drawn alloy was independent of strain amplitude because of high density dislocations formed by cold forming. Moreover, when the temperature was changed between 25 °C and 500 °C, the internal friction of the cold-drawn alloy increased slowly from 25 °C to 375 °C, and then increased quickly from 375 °C to 500 °C. However, for the solution treated alloy, there was an internal friction peak at about 210 °C in the heating process (from 25 °C to 500 °C), and there was another internal friction peak at about 150 °C in the cooling process. These peaks could be explained using the heat-assisted movement of dislocations.  相似文献   

9.
Up to now, glass capsules, which cannot resist the mixing process of concrete, have been mostly used in lab-scale proof-of-concept to encapsulate polymeric agents in self-healing concrete. This study presents the design of polymeric capsules which are able to resist the concrete mixing process and which can break when cracks appear. Three different polymers with a low glass transition temperature Tg have been extruded: Poly(lactic acid) (PLA) (Tg = 59 °C), Polystyrene (PS) (Tg = 102 °C) and Poly(methyl methacrylate/n-butyl methacrylate) (P(MMA/n-BMA)) (Tg = 59 °C). After heating the capsules prior to mixing with other components of the mix, to shift from a brittle state to a rubbery state, their survival ratio considerably increased. Moreover, a part of the capsules, which previously survived the concrete mixing process, broke with crack appearance. Although some optimization is still necessary concerning functional life of encapsulated adhesives, this seems to be a promising route.  相似文献   

10.
Oligo and polyesters were prepared from epoxidized oleic acid (EOA) and methyl oleate (EMO) in polymerization reaction with cis-1,2-cyclohexanedicarboxylic anhydride (CH) and triethylamine (TEA) as the initiator at 165 °C for 3 h. In order to increase the molecular weight of the products, a small amount of butanodiol diglycidil ether (BDGE) was added. The different steps of the reactions were elucidated by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). These same techniques as well as size exclusion chromatography (SEC), thermogravimetric analysis (TGA) and electric impedance spectroscopy (EIS) were used to characterize the products of the EMO/CH/TEA, EMO/CH/BDGE/TEA, EOA/CH/TEA and EOA/CH/BDGE/TEA reaction systems. The formation of internal ester groups was confirmed by NMR and FTIR. The Mw products are between 2500 g/mol and 85000 g/mol. The ΔΗ values are 44.6 KJ/ee and 42.7 KJ/ee for the EOA and EMO systems, respectively. The thermal degradations of the products start at temperatures higher than 180 °C. All of the products reveal glass transitions between ? 57 °C and ? 14 °C, while the EMO ones also present crystallization-like behavior at ? 7 °C and 3 °C. The dielectric properties of the products include very high resistivity and low capacitance.  相似文献   

11.
Condensation heat transfer characteristics of R134a on the integral-fin tubes are experimentally investigated. The test tubes are made of stainless steel, and the root diameter of the tubes is 13.27 mm. The height of fin is 1.19 mm, and the densities of the integral fin are 19 fpi and 26 fpi. The present tests were conducted at the saturation temperatures of 20 °C and 30 °C. The condensation heat transfer coefficients of the tubes having 19 fpi and 26 fpi at the saturation temperature of 20 °C are higher than that of the plain tube by 4.4 and 3.1 times, respectively. When the temperature difference across the condensate film is less than 0.7 °C, the enhancement of the tube of 19 fpi is much larger than that of the tube of 26 fpi. The Honda and Nozu model shows the smallest mean deviation between the estimated values and experimental results among the existing models.  相似文献   

12.
This paper reports on a comparative study of tribological and corrosion behavior of plasma nitrided 34CrNiMo6 low alloy steel under modern hot wall condition and conventional cold wall condition. Plasma nitriding was carried out at 500 °C and 550 °C with a 25% N2 + 75% H2 gas mixture for 8 h. The wall temperature of the chamber in hot wall condition was set to 400 °C. The treated specimens were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), microhardness and surface roughness techniques. The wear test was performed by pin-on-disc method. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were also used to evaluate the corrosion resistance of the samples. The results demonstrated that in both nitriding conditions, wear and corrosion resistance of the treated samples decrease with increasing temperature from 500 °C to 550 °C. Moreover, nitriding under hot wall condition at the same temperature provided slightly better tribological and corrosion behavior in comparison with cold wall condition. In consequence, the lowest friction coefficient, and highest wear and corrosion resistance were found on the sample treated under hot wall condition at 500 °C, which had the maximum surface hardness and ε-Fe2–3N phase.  相似文献   

13.
The purpose of this research is to determine the effects of two different cooling procedures on the room temperature mechanical properties of AMS 4943 Ti-325 alloy. The samples were annealed at 1170 °F (632 °C), 1200 °F (649 °C) and 1230 °F (666 °C), half of the samples were water quenched and the other half were furnace cooled to room temperature. The yield strength, ultimate strength and percent elongation as a function of quenching media were determined.  相似文献   

14.
Mechanical and electrical properties of in-situ Al–Al2O3 metal matrix composites (MMCs) fabricated by powder metallurgy approach using different aluminium powders of particle size 0.8–21 µm and purity 99.8–99.996% were examined. Hot working powder consolidation by vacuum hot pressing at 270 °C and direct extrusion at 425 °C and reduction ratio of 7:1 were applied. Subsequently, extruded composite rods with the diameter of 7.5 mm were cold worked by groove rolling and rotary swaging to the wires with the diameter of 1.1 mm. Detailed microstructural characterization of composite materials was carried out. Stress-strain characteristics of composite wires were measured at 77 and 300 K. In addition, resistivity of all wires were measured by four-probe method between 25 and 300 K and eddy current losses at frequency 72 Hz and temperatures between 18 and 77 K. Obtained results clearly showed that properly designed Al–Al2O3 MMC materials can be utilized at low temperatures e.g., for the thermal stabilization of superconducting wires.  相似文献   

15.
The superficial oxidation of pure titanium, 9 mm diameter, 5 mm thick disc samples by implantation and diffusion from inductively coupled plasmas is reported. Such rf plasmas were generated in a 15 l cylindrical Pyrex-like glass chamber containing pure circulating oxygen. A quarter wavelength solenoidal antenna capable of transmitting 500 W at 13.54 MHz was externally wound around the chamber and connected to an rf generator capable of up to 1200 W through an automatic matching network. The oxidation process was carried out for 6 h periods while varying the gas pressure between 1 × 102 and 5 × 10?1 Pa and the sample bias up to ?3000 V DC. It was found that the sample temperature was a function both of the plasma density and the bias voltage. Without bias, the plasma heated the sample up to ~200 °C, and with maximal bias voltage, the substrate was heated to 680 °C. At the latter temperature, the presence of the rutile phase was particularly evident in X-ray diffraction patterns. According to EDX data, the average oxygen to titanium ratio rose, from ~0.06 for an untreated reference sample, to a ~1.7 value for samples treated up to 680 °C.  相似文献   

16.
A prototype compact generator using the activated carbon–ammonia pair based on the plate heat exchanger concept has been designed and built at Warwick University. The novel generator has low thermal mass and good heat transfer. The heat exchanger uses nickel-brazed shims and spacers to create adsorbent layers only 4 mm thick between pairs of liquid flow channels of very low thermal mass. The prototype sorption generator manufactured was evaluated under EU car air conditioning test conditions.The prototype sorption generator is described and its experimental performance reported. While driven with waste heat from the engine coolant water (at 90 °C), a pair of the current prototype generators (loaded with about 1 kg of activated carbon) operating out of phase has produced an average cooling power 1.6 kW with about 2 kW peaks. The typical average COP obtained is 0.22.  相似文献   

17.
This work shows that peeled garlic cloves demonstrate significant supercooling during freezing under standard conditions and can be stored at temperatures well below their freezing point (?2.7 °C) without freezing. The nucleation point or ‘metastable limit temperature’ (the point at which ice crystal nucleation is initiated) of peeled garlic cloves was found to be between ?7.7 and ?14.6 °C. Peeled garlic cloves were stored under static air conditions at temperatures between ?6 and ?9 °C for up to 69 h without freezing, and unpeeled whole garlic bulbs and cloves were stored for 1 week at ?6 °C without freezing.  相似文献   

18.
The fatigue response of adhesively-bonded pultruded GFRP double-lap joints has been investigated under different environmental conditions. Tests were performed at ?35 °C, 23 °C and 40 °C. A fourth set of fatigue data was collected from tests on preconditioned specimens in warm (40 °C) water. The tests were performed at 40 °C and at 90% relative humidity. Specimens were instrumented with strain and crack gages to record fatigue data. In addition to the SN curves, stiffness fluctuations and crack initiation and propagation during fatigue were monitored. The dominant failure mode was a fiber-tear failure that occurred in the mat layers of the GFRP laminates. In the presence of high humidity, the failure shifted to the adhesive/composite interface. Although the testing temperature was lower than the glass transition temperature of the adhesive, its influence on the fatigue life and fracture behavior of the examined joints was apparent and was aggravated by the presence of humidity.  相似文献   

19.
In this study, the effect of heat treatment on the tribological properties of Al–Cu–Mg alloy reinforced with 4 wt.% SiC particles with 650 nm average particle size has been investigated. The age hardening process consists of solution treatment at 540 °C for 6 h, followed by water quenching and ageing at different temperatures of 175, 200 and 225 °C with soaking times of 3, 6 and 9 h. Hardness measurements were applied to monitor the precipitation effect and the aged samples were then subjected to wear tests under dry sliding conditions against steel and alumina counterfaces. The results showed that the reinforced material exhibits an enhanced ageing response compared to the unreinforced material in the same heat treatment conditions. The rate of ageing increases with increasing temperature; however, ageing at 200 and 225 °C for more than 6 h resulted in over-ageing. The best combinations for the enhanced tribological properties for the composite material were selected as 6 h ageing at 225 °C. The precipitation effect for this alloy can be enhanced by the small addition of SiC nanoparticles. Having a small amount of nanoSiC particles with fine precipitates inside the matrix further increases the hardness and wear properties.  相似文献   

20.
The effect of seawater immersion on impact behavior of glass–epoxy composite pipes is experimentally investigated. Glass–epoxy pipes with [±55°]3 orientation were fabricated using filament winding method. Composite pipes were selected for four different diameters as 50 mm, 75 mm, 100 mm, and 150 mm. The pipes were immersed in artificial seawater having a salinity of about 3.5% for 3, 6, 9, and 12 months in laboratory conditions. At the end of the conditioning period, the specimens were impacted at three distinct energy levels as 15 J, 20 J, and 25 J at ambient temperature of 20 °C. The comparisons between the dry and immersed cases were carried out by using contact force, deflection and absorbed energy data of the impact tests. Results show that moisture absorption, salt in seawater, diameter of specimen and residual stresses produced by manufacturing process of the composite pipe have significant effect on maximum contact force, maximum deflection, absorbed energy and failure of composite pipes according to exposure time to seawater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号