首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
ZnO nanostructures were synthesized by chemical bath deposition method, using zinc nitrate [Zn(NO3)2] and hexa-methylene-tetra-amine [(HMT),C(H2)6N4] as precursors. Controlled size and shape evolution of ZnO nanostructures were achieved by changing the HMT concentration from 0.025 M to 0.1 M, whereas Zn(NO3)2 concentration kept constant. X-ray diffraction (XRD) and Raman study confirmed the formation of single crystalline, hexagonal wurtzite ZnO structure. Sharp peaks in Raman spectra, corresponding to E2(low) and E2(high) referred to wurtzite structure with higher order of crystallinity. Transmission electron microscopy (TEM) revealed that the shape and size of the nanostructures reduced, with increasing concentration of HMT. Further, effect of structure's size was observed in the band gap (shift). Photoluminescence study showed two peaks at ~ 380 nm and ~ 540 nm corresponding to the band to band transition and defect transitions. Modifications of properties are explained in detail on the basis of shape and size change of the structures and possible mechanism is discussed.  相似文献   

2.
Metal–semiconductor Zn–ZnO core–shell microcactuses have been synthesized on Si substrate by simple thermal evaporation and condensation route using NH3 as carrier gas at 600 °C under ambient pressure. Microcactuses with average size of 65–75 μm are composed of hollow microspheres with high density single crystalline ZnO rods. The structure, composition and morphology of the product were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscope (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). A vapor–liquid–solid (VLS) based growth mechanism was proposed for the formation of Zn–ZnO core–shell microcactuses. Room temperature photoluminescence (PL) investigations revealed a strong and broad blue emission band at 441 nm associated with a weak ultraviolet (UV) peak at 374 nm. This blue emission (BE) is different from usually reported green/yellow-green emission from Zn–ZnO or ZnO structures. The field emission (FE) measurements exhibited moderate values of turn-on and threshold fields compared with reported large field emissions for other materials. These studies indicate the promise of Zn–ZnO core–shell microcactuses for the applications in UV-blue light display and field emission microelectronic devices.  相似文献   

3.
Novel composites of ZnO-nanoparticles and magadiite were successfully prepared by a simple ion-exchange technique in an aqueous suspension of magadiite (Na2Si14O29·nH2O) and Zn(NO3)2. The TEM and STEM measurements showed that the composites have a structure in which ZnO-nanoparticles with relatively uniform particle sizes are well dispersed within the interlaminar spaces of the magadiite matrix. The particle sizes of the ZnO-nanoparticles were found to depend on the heat-treatment temperature; the average particle sizes are ~ 2.6, ~ 2.8, ~ 4.4 and ~ 4.6 nm, respectively, for the temperatures of 40, 180, 300 and 600 °C. It was also found that the ZnO nanoparticles crystallize and form a single-crystalline particle when the temperature exceeds ~ 300 °C.  相似文献   

4.
Uniform ZnO nanoparticles (NPs) have been created by Zn ion implantation and post Xe ion irradiation. Irregularly shaped ZnO NPs with a broad size distribution of 5–30 nm have been tailored to spherical shape with a narrow size distribution of 3–5 nm. The optical properties of the ZnO NPs have been modified clearly after Xe ion irradiation. Furthermore, Rutherford back-scattering spectrometry results give the evidence that Xe irradiation can cause the diffusion and reprecipitation of the Zn NPs. The present study shows the interest of using heavy ion irradiation to tailor size and shape distribution of the embedded NPs in SiO2.  相似文献   

5.
The Zn1−xMgxO (x = 0%, 2% and 5%) microtubes have been successfully synthesized via a microwave heating method. The as synthesized microtubes were carefully investigated. Field emission scanning electron microscope (FE-SEM) showed that all the microtubes exhibit an exact hexagonal hollow structure with smooth surfaces and straight characteristics throughout their whole lengths. UV–Vis measurement indicates that the absorption peak for ZnO microtube was shifted from 378.88 nm (3.27 eV) to 369.91 nm (3.35 eV) for Zn0.95Mg0.05O microtube. Room temperature photoluminescence (PL) spectra showed that the intensity of UV emission peak decreased with increase of MgO concentration and the visible emission band showed a blue shift from 538.06812 nm for ZnO microtube to 529.54114 nm for Zn0.95Mg0.05O microtube. Energy-dispersive spectrometer (EDS) analysis revealed the presence of Zn and O as the only elementary components with the absence of MgO as a doping material.  相似文献   

6.
ZnO nanoparticles were synthesized solvothermally in various diols (ethylene glycol, di(ethylene glycol), tetra(ethylene glycol), 1,2-propanediol, 1,4-butanediol), using basic zinc carbonate (2ZnCO3·3Zn(OH)2) as a precursor for the first time. Since ZnCO3 was sparingly soluble in diols the transformation reaction proceeded at a low reaction rate. Ethylene glycol was found as the most suitable medium among five diols studied yielding the smallest ZnO particles (~ 55 nm) and short reaction time, tr (2 h). Diols with shorter chain length produced smaller ZnO particles. p-Toluene sulfonic acid (p-TSA) acted as a catalyst and reduced tr from 8 h to 2 h in concentration of 0.02 M. Optimum reaction conditions for the synthesis in ethylene glycol were 185 °C and 2 h. At higher p-TSA concentrations (0.04–0.08 M) the size of ZnO particles was reduced from 500–800 nm to 50–100 nm and crystallite size to 25–30 nm. Benzene sulfonic acid (BSA) and inorganic bases (LiOH, NaOH, and KOH) also showed catalytic activities. Raman and photoluminescence spectroscopies revealed high concentration of defects on ZnO surface causing the emission of visible light and giving this type of ZnO higher potential in various (opto)-electronic application in comparison to Zn(II) acetate based ZnO.  相似文献   

7.
Zinc oxide (ZnO) was synthesized using a microwave assisted hydrothermal (MAH) process based on chloride/urea/water solution and under 800 W irradiation for 5 min. In the bath, Zn2+ ions reacted with the complex carbonate and hydroxide ions to form zinc carbonate hydroxide hydrate (Zn4CO3(OH)6·H2O), and the conversion from Zn4CO3(OH)6·H2O to ZnO was synchronously achieved by a MAH process. The as-prepared ZnO has a sponge-like morphology. However, the initial sponge-like morphology of ZnO could change to a net-like structure after thermal treatment, and compact nano-scale ZnO particles were finally obtained when the period of thermal treatment increased to 30 min. Pure ZnO nanoparticles was obtained from calcination of loose sponge-like ZnO particles at 500 °C. The analysis of optical properties of these ZnO nanoparticles showed that the intensity of 393 nm emission increased with the calcination temperature because the defects were reduced and the crystallinity was improved.  相似文献   

8.
《Materials Letters》2006,60(13-14):1702-1705
Nanocrystalline MMoO4 (M = Ni, Zn) phosphors, which have wolframite-type structure, were successfully synthesized at low temperatures via a modified citrate complex route assisted by microwave irradiation. The citrate complex precursors were heat-treated from 300 to 600 °C for 3 h. Crystallization of the MMoO4 (M = Ni, Zn) nanocrystallites were detected at 500 °C, and entirely completed at a temperature of 600 °C. The nanoparticles presented primarily dispersed and homogeneous morphology with particle size of 20–40 nm. The nanocrystalline MMoO4 (M = Ni, Zn) phosphors prepared at 600 °C exhibited broad luminescence in green and blue wavelength region, respectively.  相似文献   

9.
ZnO nanoparticles (NPs) embedded in Si (100) substrate have been created by Zn ion implantation and post thermal annealing in oxygen atmosphere. Several techniques have been employed to investigate the formation of Zn NPs and their thermal evolution at elevated temperatures. Grazing X-ray diffraction results clearly show that ZnO NPs are effectively formed after 600 °C annealing, and they show a (101) preferential orientation. Cross-sectional transmission electron microscopy observations confirm that ZnO NPs with a narrow size distribution of 2–7 nm are formed within the near-surface region of about 35 nm in thickness. Photoluminescence measurement displays a strong emission band centered at 387 nm in the sample annealed at 600 °C.  相似文献   

10.
Zinc oxide (ZnO) was site-selectively grown on the palladium (Pd) catalyst through the electroless deposition process under mild conditions, and the effects of deposition temperature and chemical composition on the ZnO crystal growth were investigated. ZnO crystals were synthesized on the UV-patterned Pd catalysts in the aqueous solutions of various dimethylamine borane (DMAB)/Zn(NO3)2 ratio at 30–70 °C. The site-selective deposition was confirmed by X-ray photoelectron spectroscopy (XPS) data and elemental maps of Pd, Zn and oxygen in energy-filtering transmission electron microscopy (EFTEM), and the crystal morphology was observed by scanning electron microscopy (SEM). A strong near band emission at around 390 nm and a weak green emission at around 470 nm were observed in the photoluminescence (PL) spectrum. The ZnO crystals were grown in the following three steps: (1) ZnO fibrils were generated on the Pd catalysts and became sphere-like particles, (2) hexagonal wurtzite crystals initiated to grow from the sphere-like particles, and (3) the crystals grew in two directions—longitudinal and lateral growths giving rod-type or needle-type hexagonal crystals. It was found that longitudinal growth rate increased with increasing deposition temperature or DMAB/Zn(NO3)2 ratio.  相似文献   

11.
《Materials Research Bulletin》2013,48(11):4769-4774
The ZnO nanorods with small diameters of 20 nm were prepared successfully by an easy “in situ consumed template” route. In the synthesis, Zn(Ac)2 were used as Zn source and dodecanethiol (DT) was used as coordinated agents in ethanol solvent. The samples were characterized detailed by XRD, TEM and IR techniques. The results indicated that the ZnO rods were uniform in diameters with good crystallinity. Time-dependent experiments indicated that the ZnO rods are grown within the Zn–DT complex (a complex composed of Zn and DT) that was formed at the beginning of the reaction. With prolonging the reaction time, the Zn–DT “template” was gradually in situ consumed and transformed into ZnO, and finally, the ZnO nanorods with diameters of 20 nm were obtained. The method here provides the new route for ZnO nanorods with small diameters.  相似文献   

12.
In this work, nano-sized ZnO particles were prepared by a direct precipitation method with Zn(NO3)2·6H2O and NH3·H2O as raw materials, and the impact of the synthesis process was studied. The optimal thermal calcined temperature of precursor precipitates of ZnO was obtained from the differential thermal analysis (DTA) and the thermal gravimetric analysis (TGA) curves. The purity, microstructure, morphology of the calcined ZnO powders were studied by X-ray diffraction (XRD), energy dispersive X-ray spectrum (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The synthesized ZnO powders had a wurtzite structure with high purity. The final products were of flower-like shape and the nanorods which consisted of the flower-like ZnO bunches were 20–100 nm in diameter and 0.5–1 μm in length. The effect of process conditions on the morphology of ZnO was discussed.  相似文献   

13.
Demand to develop a simple and adaptable method for preparation the hierarchical porous scaffolds for bone tissue regeneration is ever increasing. This study presents a novel and reproducible method for preparing the scaffolds with pores structure spanning from nano, micro to macro scale. A macroporous Sr-Hardystonite (Sr–Ca2ZnSi2O7, Sr–HT) scaffold with the average pore size of ~ 1200 μm and porosity of ~ 95% was prepared using polymer sponge method. The struts of the scaffold were coated with a viscous paste consisted of salt (NaCl) particles and polycaprolactone (PCL) to provide a layer with thickness of ~ 300–800 μm. A hierarchical porous scaffold was obtained with macro, micro and nanopores in the range of 400–900 μm, 1–120 μm and 40–290 nm, after salt leaching process. These scales could be easily adjusted based on the starting foam physical characteristics, salt particle size, viscosity of the paste and salt/PCL weight ratio.  相似文献   

14.
In this study, the effects of bioactive glass nanoparticles' (nBGs) size and shape incorporated into hydroxyapatite/β-tricalcium phosphate (BCP) scaffolds were investigated. We prepared a highly porous (> 85%) BCP scaffold and coated its surface with a nanocomposite layer consisted of polycaprolactone (PCL) and rod (~ 153 nm in height and ~ 29 nm in width) or spherical (~ 33 nm and 64 nm in diameter) nBGs. Osteogenic gene expression by primary human osteoblast-like cells (HOB) was investigated using quantitative real time polymerase chain reaction (q-RT-PCR). We demonstrated for the first time that in vitro osteogenesis is dramatically affected by the shape of the nBGs, whereby rod shaped nBGs showed the most significant osteogenic induction, compared to spherical particles (regardless of their size). Importantly, the good biological effect observed for the rod shaped nBGs was coupled by a marked increase in the modulus (~ 48 MPa), compressive strength (~ 1 MPa) and failure strain (~ 6%), compared to those for the BCP scaffolds (~ 4 MPa, ~ 1 MPa and ~ 0.5% respectively). The findings of this study demonstrated that the shape of the nBGs is of significant importance when considering bone regeneration.  相似文献   

15.
《Materials Research Bulletin》2006,41(11):2123-2129
The zinc oxide thin films on aluminum foil have been successfully prepared by sol–gel method with methyl glycol as solvent. The film was characterized by means of XRD, TG, UV–vis, SEM and AFM, which show that the ZnO/Al film is formed by a layer of ZnO nano-sized particles with average diameter of 52.2 nm. Under the initial concentration of 20 mg/L phenol solution (500 mL) and visible light irradiation time of 3 h, more than 40% of the initial phenol was totally mineralized using two pieces of ZnO/Al thin film as photocatalyst with an efficient irradiation area of 400 cm2. It is a promising visible light responded photocatalyst for the activation of O2 at room temperature to degrade organic pollutants.  相似文献   

16.
Zinc oxide (ZnO)/zinc tungstate (ZnWO4) rod-like nanoparticles with diameters in the range of 6–11 nm and length of about 30 nm were synthesized by a low temperature soft solution method at 95 °C in the presence of non-ionic copolymer surfactant. It was found that their crystallinity was enhanced with the increase of heating time from 1 h up to 120 h. The photoluminescence (PL) measurements showed very strong, narrow UV band peaked at 3.30 eV and a broad visible band peaking at 2.71 eV with a shoulder at about 2.53 eV, for λexc < 300 nm. Quite large variations in the intensities of the two PL bands were observed for different excitation wavelengths. The intensity of the main visible band decreases with decreasing excitation energy and disappears when samples are excited λ = 320 nm (Eexc = 3.875 eV). We found that observed optical properties originate from ZnO phase. UV band gap PL had high intensity for all applied excitations, probably induced by ZnWO4 phase presence on the surface. In addition, two values were found for direct band-gap energy of ZnO/ZnWO4 rod-like nanoparticles 3.62 and 3.21 eV, determined from reflectance spectrum. The photocatalytic behaviour of ZnO is strongly dependent on the formation of ZnWO4 phase, of the obtained rod-like nanoparticles.  相似文献   

17.
Novel photoluminescent salicylaldimine ligands condensed from 3/, 3/, 4/, 4/-tetraminobiphenyl and 4-substituted long alkoxy salicylaldehyde possessing two sets of tetradentate [N2O2] donor site and their binuclear zinc(II) complexes have been synthesized. The mesogenic and photophysical properties were investigated. The compounds were characterized by FT-IR, 1H and 13C NMR, UV–vis, elemental analyses, solution electrical conductivity measurements and FAB mass spectrometry. The mesomorphic behavior of these compounds was probed by differential scanning calorimetry and polarized optical microscopy. The ligand with six carbon chain length showed monotropic nematic mesomorphism at 128° C. However, the ligand with alkoxy tail of carbon length 12 showed enantiotropic SmC phase. The complexes are devoid of any mesomorphism. The low molar conductance values in CH2Cl2 indicate that the complexes are non-electrolytes. At 330 nm excitation, the ligand emits green light at ~ 516 nm (Φ = 30%) and ~ 549 nm (Φ = 16%) in solution and solid state, respectively. At similar excitation wavelength, the complexes exhibit blue light in solution at ~ 452 nm (Φ = 20%) and green light in solid state ~ 555 nm (Φ = 11%). The DFT calculations were performed using DMol3 program at BLYP/DNP level to ascertain the stable electronic structure of the complex.  相似文献   

18.
A novel, vitamin E-stabilized, medical grade ultra-high molecular polyethylene, MG003 (DSM Biomedical; The Netherlands), has been very recently introduced for use in total joint replacements. This homopolymer resin features average molecular weight similar to that of conventional GUR 1050 resin (5.5–6*106 g/mol), but a higher degree of linearity. The aim of this study was to characterize the microstructure, thermal and thermooxidation properties as well as the mechanical behavior of this novel MG003 resin before and after gamma irradiation in air to 90 kGy. For this purpose, a combination of experimental techniques were performed including differential scanning calorimetry (DSC), thermogravimetry (TG), transmission electron microscopy (TEM), X-Ray Diffraction, electron paramagnetic resonance (EPR), and uniaxial tensile tests. As-consolidated MG003 materials exhibited higher crystalline contents (~ 62%), transition temperatures (~ 140 °C), crystal thickness (~ 36 nm), yield stress (~ 25 MPa) and elastic modulus (~ 400 MPa) than GUR 1050 controls (55%, 136 °C, 27 nm, 19 MPa, and 353 MPa, respectively). Irradiation produced similar changes in both MG003 and GUR 1050 materials, specifically increased crystallinity (63% and 60%, respectively), crystal thickness (39 nm and 30 nm), yield stress (27 MPa and 21 MPa), but, above of all, loss of elongation to breakage (down to 442 and 469%, respectively). Thermogravimetric and EPR results suggest comparable susceptibilities to oxidation for both MG003 and GUR 1050 polyethylenes. Based on the present findings, MG003 appears as a promising alternative medical grade polyethylene and it may satisfactorily contribute to the performance of total joint replacements.  相似文献   

19.
《Materials Letters》2006,60(21-22):2777-2782
ZnO nanowires with high-aspect-ratio of up to ca. 600 were synthesized in a quaternary reverse microemulsion containing sodium dodecyl sulfate (SDS) / water / heptane / n-hexane via a hydrothermal method. SDS, as an anionic surfactant, plays an important role in the formation of morphologies. Subsequently, we studied lots of key influencing factors including the molar ratio (w) value of NaOH to Zn(OAc)2, the reaction temperature, and the instance without the quaternary reverse microemulsion. The selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) reveal the single-crystal nature of the ZnO nanowires. The morphologies and crystalline structure of the as-obtained products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and powder X-ray diffraction (XRD), respectively. Through this route, we can obtain a mass of products and the method is both convenient and reproducible. Finally, we measured the photoluminescence (PL) spectra and found that the ZnO nanowires exhibited green-orange emission at 525 nm and short ultraviolet emission at 380 nm and the ZnO nanomaterials with different aspect ratio (length to diameter) (L / D) showed PL intensity disciplinary change. Aiming at this phenomenon, we propose a reasonable mechanism to explain the PL spectra of the ZnO nanomaterials in detail.  相似文献   

20.
Quantum-sized ZnO was prepared using sol–gel method with zinc acetate dehydrate (Zn(CH3COO)2·2H2O) and lithium hydroxide monohydrate (LiOH·H2O) as raw material. The ZnO particles annealed at different temperature were characterized by means of X-ray diffraction (XRD), Infrared absorption spectroscopy (IR) and UV–vis spectroscopy. The degradation rate of reactive brilliant blue X-BR in aqueous solution was used to evaluate the photocatalytic performance of the quantum-sized ZnO. The experimental results indicated that the photocatalytic property of the ZnO was excellent. The photocatalytic efficiency of quantum-sized ZnO was significantly influenced by the calcining heat. When calcined at 300 °C, its size is 6.78 nm and the photocatalytic performance is the best. The degradation rate of reactive brilliant blue X-BR could exceed 90% in 15 min at 35 °C, when the concentration of the quantum-sized ZnO was 0.35 mg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号