首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the retardation mechanisms due to overload and to predict the subsequent evolution of crack growth rate, investigations are conducted on crack retardation caused by single tensile overloads in base material and laser-welded sheets of AA6056-T6 Al alloy. The effect of the overload ratio on the fatigue crack propagation behaviour of the C(T) 100 specimens was analysed by using experimental and Finite Element (FE) methods. The crack growth rate and fracture surface features were investigated for both base material and laser-welded sheets. The retardation due to overload is described in terms of the affected regions in front of the crack tip. The size and shape of the crack-tip plastic zone and the damage profile induced during the application of the overload in the base material are predicted by FE analysis in conjunction with a porous-metal plasticity model. The results show that the mechanisms of retardation in under-matched welds are substantially different from that of the homogenous base material. More significant crack retardation due to overload has been observed in the laser weld of AA6056-T6. Based on SEM observations of the fracture surfaces and the damage profiles predicted by the proposed FE model, the shape of the crack front formed during the overload application can be predicted. During the overload, the crack front extends into a new shape, which can be predicted by the ductile damage model; a higher load results in a more curved crack front. These outcomes are used to determine the dominant retardation mechanisms and the significance of retardation observed in each region ahead of the crack tip and finally to define the minimum crack growth rate after overload.  相似文献   

2.
Application of an overload within an otherwise constant-amplitude loading scenario causes retardation in crack propagation. Several models have been proposed for predicting retardation in crack propagation due to an overload cycle. Among them, the widely used Wheeler model, assumes the “affected zone dimension” to be a function of the current and overloaded plastic zone radii. When one considers the actual shape of the plastic zone, however, one realizes that the affected zone dimension does not agree with that assumed by Wheeler.In this paper, the influence of a single overload (but by considering three different overload ratios) on the fatigue crack growth retardation of center-cracked AM60B magnesium alloy plates is experimentally investigated. The retardation effect on crack growth due to an applied overload within a random-amplitude loading scenario, using various “clipping levels”, is also investigated. The sensitivity of this material to overload is compared with the response of some other materials.The actual radius of the plastic zone is evaluated for various stress intensity factors, using the finite element method. The results indicate that depending on the material, the affected zone would be sometimes larger or smaller than that produced by Wheeler’s model. Subsequently, a new parameter, hereafter referred to as the “sensitivity parameter” (β), is introduced that enables one to evaluate the affected zone dimension more accurately. It is shown that the proposed modified model is more effective than the original one in predicting the retardation response of the alloy. The integrity of the modified model is also investigated by evaluating the retardation in some other materials.  相似文献   

3.
The propagation of a growing fatigue crack can be effectively retarded by heating a spot near the crack tip (under zero stress condition). Spot heating to a subcritical temperature and at a precise location modifies the crack growth behaviour in a way, more or less, similar to specimens subjected to an overload spike. It is observed that the magnitude of spot heating induced crack growth retardation increases with increase in spot temperature. It is also observed that the crack growth behaviour is influenced by the position of the heating spot and there exists an optimum position of hot spot that produces maximum retardation in fatigue crack growth rate. The plastic zone length due to spot heating has been estimated using experimental data. It is found that the plastic zone length due to spot heating increases exponentially with increase in spot temperature. The Wheeler model for crack growth retardation has been modified by introducing a plastic zone correction factor λ. The values of λ and the shaping exponent, m, in the Wheeler model have been obtained for different spot heating temperatures.  相似文献   

4.
The aim of this study was to investigate the effects of a single tensile overload on subsequent fatigue crack growth in a 316L stainless steel. Fatigue tests were conducted under the plane stress condition, and further supplemented with compliance measurements and field emission scanning electron microscopy (FESEM) observations. Effects of a tensile overload, e.g. initial acceleration and subsequent retardation of fatigue crack growth, were explained and quantified by FESEM and compliance measurements. The FESEM observations suggest that the initial crack growth acceleration stems from void and quasi-cleavage fracture within the fatigue damage zone in the vicinity of the crack tip. Systematic compliance measurements taken during fatigue crack growth suggest that the overall crack growth retardation is related to strain hardening and residual compressive stress produced by the plastic deformation associated with the tensile overload.  相似文献   

5.
In this paper, the effect of strength mismatch and width of the welded joints on the stress–strain distribution in the crack tip region has been discussed. The single-edge notched bend (SENB) specimens (precrack length a0/W = 0.32) were experimentally and numerically analysed. The model of local approach to fracture, proposed by Gurson, Tvergaard and Needleman, was used. High-strength low-alloyed (HSLA) steel was used as a base metal in quenched and tempered condition. The flux-cored arc-welding process in shielding gas was used. Two different fillers were selected to make over- and undermatched weld metal. The experimental analysis of fracture behaviour of the over- and undermatched welded joints was followed by numerical computations of void volume fraction in front of the crack tip. The critical void volume fraction, fc, used in prediction of the crack growth initiation on the SENB specimen had been previously determined on a round smooth specimen. Three widths of weld metal were considered: 6, 12 and 18 mm. A comparison of the crack tip opening displacement (CTOD) values corresponding to crack initiation in the SENB specimens is given, as determined both experimentally and using the GTN model.  相似文献   

6.
单一过载使得疲劳裂纹扩展速率减缓,可以提高疲劳寿命,但对于多个过载作用下疲劳裂纹扩展仍未明确,有待于进一步研究。针对Q345R标准紧凑拉伸试样,在常幅循环加载条件下引入多个拉伸过载,研究多个过载作用对疲劳裂纹扩展行为的影响。研究结果表明:在保持应力比、过载位置和过载比不变的情况下,随着过载间距增加,迟滞效应先增加后减小;过载间距循环数是单一过载迟滞循环数的一半时,da/dNmin达到最小,迟滞效应最明显。采用含有过载交互作用参数ØI的修正Wheeler模型对不同的过载间距疲劳裂纹扩展行为试验结果进行预测,预测的结果与试验结果能够很好的吻合。  相似文献   

7.
It is a difficult task to predict fatigue crack growth in engineering structures, because they are mostly subjected to variable amplitude loading histories in service. Many prediction models have been proposed, but no agreed model on fatigue life prediction adequately considering loading sequence effects exists. In our previous research, an improved crack growth rate model has been proposed under constant amplitude loading and its good applicability has been demonstrated in comparison with various experimental data. In this paper, the applicability of the improved crack growth rate model will be extended to variable amplitude loading by modifying crack closure level based on the concept of partial crack closure due to crack‐tip plasticity. It is assumed in this model that the crack closure level can instantly go to the peak/valley due to a larger compression/tensile plastic zone resulted from the overload/underload effect, and gradually recovers to the level of constant amplitude loading with crack propagation. To denote the variation in the affected zone of overload/underload, a modified coefficient based on Wheeler model is introduced. The improved crack growth rate model can explain the phenomena of the retardation due to overload and the tiny acceleration due to underload, even the minor retardation due to overload followed by underload. The quantitative analysis will be executed to show the capability of the model, and the comparison between the prediction results and the experimental data under different types of loading history will be used to validate the model. The good agreement indicates that the proposed model is able to explain the load interaction effect under variable amplitude loading.  相似文献   

8.
On the influence of wet underwater welding on CTOD-δ5   总被引:1,自引:0,他引:1  
The influence of wet underwater welding on the crack tip opening displacement CTOD-δ5 is investigated in this paper. The welding process is numerically simulated. The instationary temperature field and welding residual stresses are calculated using the finite element method (FEM). The crack tip opening displacement for a sharp, stationary crack on the surface of a bead-on-plate weld under bending is determined. The results for an underwater wet welded specimen and a dry welded specimen are compared. The welding residual stresses are considered in the 3D fracture mechanics FE calculation as well as the material heterogeneity due to the different material properties of weld metal, heat-affected zone and base metal. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
A series of fatigue crack growth experiments were conducted using round compact tension specimens of AISI 304L stainless steel under Mode I loading. The influences of the R-ratio (the ratio of the minimum load to the maximum applied load in a cycle), notch size, the tensile and compressive overloads, and the loading sequence on crack growth were studied. The results show that the material displays sensitivity to the R-ratio. The application of a tensile overload results in a short period of acceleration in the crack growth rate followed by a significant retardation in the crack growth rate. A compressive overload (underload) produces a short period of acceleration in crack growth and the magnitude of such an acceleration depends on the value of the loading amplitude of the constant-amplitude loading. Results from the two-step high-low loading sequence reveal a period of crack growth retardation at the beginning of the lower amplitude step, an effect similar to that of a single overload. Two existing crack growth models which are based on the stress intensity factor concept are evaluated using the experimental results. A two-parameter crack driving force approach together with a modified Wheeler’s model is found to correlate well the crack growth experiments.  相似文献   

10.
A number of modifications to the Wheeler fatigue crack retardation model were proposed. The modifications allow the model to account for the delay retardation due to applied overloads, initial crack growth acceleration immediately following an overload, overload interaction and the net section yielding effect observed in the fatigue crack growth retardation behaviour of many materials. The modified model was used to predict the fatigue life of a series of single and multiple overloading fatigue tests conducted on 350 WT steel. The results showed that the modified model predicted the fatigue lives with a greater accuracy than the original model.  相似文献   

11.
This paper details the theoretical development of a new model for fatigue crack growth retardation resulting from an applied overload. The model is based upon the concept that residual stresses due to plastic deformation reduce the value of the stress intensity range that drives fatigue crack propagation. A calculation is presented showing the variation of plastic zone size as the crack tip advances through the overload plastic zone. This information is used to define an effective stress intensity range that applies during the retardation period. A strip-yield representation of crack tip plasticity is employed in the analysis, and the effect of crack closure is included by means of a previously developed analytic function method. The fracture mechanics based model predicts the delayed retardation effect and other experimentally observed features of overload-influenced fatigue crack growth.  相似文献   

12.
The fatigue crack growth behavior under constant amplitude and under single overload of 2024 aluminum alloy in sheet and plate product form has been investigated. Constant amplitude fatigue crack growth tests showed superior crack growth resistance of the plate attributed to a pronounced roughness induced crack closure as a result of the coarse and elongated grain structure. Crack growth tests with single overload showed that the retardation effect caused by the overload is not primarily influenced by roughness crack closure at the crack path. In this case, the sheet material with lower yield strength revealed a higher retardation effect than the plate material. The observed crack growth behavior has been simulated with the LTSM-F model, which accounts for retardation of crack growth after an overload due to material strain hardening at the crack front. Dissimilar strain hardening at the crack tip due to different yield strength for the sheet and plate has been considered by means of strength gradients inside the overload plastic zone. The analytical results confirmed the observed material crack growth trends.  相似文献   

13.
High energy synchrotron X-ray diffraction measurements have been performed to provide quantitative microscopic guidance for modeling of fatigue crack growth. Specifically we report local strain mapping, along with in situ loading strain response, results on 4140 steel fatigue specimens exhibiting the crack growth retardation “overload effect”. Detailed, 2D, εyy-strain field mapping shows that a single overload (OL) cycle creates a compressive strain field extending millimeters above and below the crack plane. The OL strain field structures are shown to persist after the crack tip has grown well beyond the OL position. The specimen exhibiting the maximal crack growth rate retardation following overload exhibits a tensile residual strain region at the crack tip. Strain field results, on in situ tensile loaded specimens, show a striking critical threshold load, Fc, phenomenon in their strain response. At loads below Fc the strain response is dominated by a rapid suppression of the compressive OL feature with modest response at the crack tip. At loads above Fc the strain response at the OL position terminates and the response at the crack tip becomes large. This threshold load response behavior is shown to exhibit lower Fc values, and dramatically enhanced rates of strain change with load as the crack tip propagates farther beyond the OL position. The OL strain feature behind the crack tip also is shown to be suppressed by removing the opposing crack faces via an electron discharge cut passing through the crack tip. Finally unique 2D strain field mapping (imaging) results, through the depth of the specimen, of the fatigue crack front and the OL feature in the wake are also presented.  相似文献   

14.
The crack growth behavior of AL6XN stainless steel was experimentally investigated using round compact tension (CT) specimens. The influences of the R-ratio (the ratio of the minimum load over the maximum applied load in a cycle), the tensile and compressive overloads, and the loading sequence on crack growth were studied in detail. The results from the constant-amplitude experiments show a sensitivity of the crack growth rate to the R-ratio. The application of a tensile overload has a profound effect on crack growth, resulting in a significant retardation in the crack propagation rate. A compressive overload (underload) leads to a short-lived acceleration in crack growth. Results from the two-step high-low loading reveal a period of crack growth retardation at the beginning of the lower amplitude step, an effect similar to that of a single overload. A crack driving force parameter together with a modified Wheeler model is found to correlate the crack growth experiments well.  相似文献   

15.
研究了恒定ΔK条件下,单次拉伸超载对A537钢疲劳裂纹扩展速率的影响,并利用激光散斑技术原位研究超载前后的裂尖应变场,裂纹闭合效应。结果表明:超载后裂纹闭合效应呈增强趋势,裂尖应变呈下降趋势。伸超载有阻滞裂纹扩展的作用。  相似文献   

16.
Delamination extension and fatigue crack growth behaviors under single overloads were investigated for GLARE 2-2/1-0.3 with fiber direction of 00/00. The results indicate that the stress intensity factor at the crack tip in metal layer while overload applied, Ktip,ol is a key controlling variable which influences fatigue crack growth and delamination behaviors. When Ktip,ol becomes bigger and exceeds a critical value, an obvious kink in the delamination shape is observed nearby the location of overload applied. Crack growth rate after application of overload could not return to its original level even the crack grows beyond the overload plastic zone. The reduction magnitude of the crack growth rate becomes bigger with the overload ratio (intrinsically Ktip,ol) increasing. These new results for the crack growth behavior have never been reported before, which can be well explained by the delamination extension behavior observed after overload applied.  相似文献   

17.
Fatigue of the tensile armor wires is the main failure mode of flexible risers. Techniques to increase the life of these components are required to improve the processes safety on oil exploration. This work evaluates the crack growth retardation of high strength steel wires used in flexible pipelines. Fracture toughness tests were performed to establish the level of stress intensity factor wherein the wires present significant plastic deformation at the crack tip. The effect of tensile overload on fatigue behavior was assessed by fatigue crack growth testing under constant ΔK control and different overload ratios with two different load ratios. The outcomes show that the application of controlled overloads provides crack retardation and increases the fatigue life of the wires more than 31%. This behavior is also evident at stress ratio of 0.5, in spite of the crack closure effect being minimized by increasing the applied mean stress.  相似文献   

18.
The fatigue crack growth retardation phenomenon following a single peak overload applied tothick andthin SEN bend specimens has been studied for a low carbon structural steel. Fatigue tests were performed under a constant load ratio of 0.6, constant stress intensity range of 10 MPam1/2 and a constant overload ratio of 2.5. An immediate increase followed by a transient retardation in the fatigue crack growth rate, due to the applied overload, was observed for thethick specimen but complete crack arrest was obtained for thethin specimen. The immediate increase in the fatigue crack growth rate following the single peak overload in thethick specimen was attributed to the coincidence of monotonic fracture modes.  相似文献   

19.
20.
Fatigue crack growth tests were carried out under constant-ΔK loading interrupted by a single overload (OL). The specimen material was a ductile austenitic CrNi alloy. Variables of the experimental program were the severity of the OL and the specimen thickness, the latter one in view of plane strain/plane stress aspects. The results confirm the delayed retardation phenomenon as abundantly observed for aluminium alloys. Fractographic observations were made with special attention to crack extension during the OL and base line cycles following the OL, a topic somewhat neglected in previous studies. Striation observations indicate an increased crack growth rate in a small number of cycles after the application of the OL. This is an unexpected new phenomenon, which could be made with innovative fractographic procedures. It is associated with crack tip blunting and crack tip opening displacements for which a model was proposed. The results should be of interest for fracture mechanics prediction models on fatigue crack growth under variable amplitude loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号