首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Iron-doped vanadium-tin oxide nanoparticles have been synthesized by a hydrolysis and co-precipitation method from iron(II) acetate, vanadium(III) acetylacetonate and tin tetrachloride. The mixed oxide was characterized as a tetragonal cassiterite structure by X-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) revealed an electronic interaction between tin, vanadium and iron atoms in the oxide structure. Addition of iron species into the vanadium-tin oxide led to a decrease in the crystallite size and changes in the oxidation states of vanadium and iron cations in the surface region. Based on sensitivity measurements in a semiconductor CO gas sensor, the iron doping resulted in a shift of the maximum sensitivity toward the lower temperature side. A correlation between the surface state and sensor performance is proposed.  相似文献   

2.
Nano sized tin oxide powders have been synthesized via two different chemical routes namely solid-state and sol–gel route for the fabrication of tin oxide gas/odors sensor. The synthesized powders have been characterized by simultaneous thermo gravimetric and differential thermal analysis (TG-DTA), powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FTIR) spectroscopy. The effect of synthesis routes have been investigated on particle size and morphology of tin oxide powders. Powder XRD patterns show that the synthesized powders have tetragonal (rutile) crystal structure. FESEM of formed thick films reveal that powder prepared by solid-state reaction route is less agglomerated as compared to the powder prepared by sol–gel route. XRD and FESEM indicate that there is the formation of tin oxide nanoparticles in the range of 15–50 nm. FTIR spectrums of synthesized powders show Sn-O or Sn-O-Sn stretching modes and its lattice modes at 615 and 494 cm?1.  相似文献   

3.
Although tin oxide has been the most widely investigated metal oxide material for gas detection, it suffers from the large resistance and high operating temperature. This could be overcome by hybridization with nanostructured carbon. In this work, tin oxide nanoparticles with ultrasmall sizes of 1-3 nm have been uniformly coated onto bundles of single-walled carbon nanotubes by a surfactant assisted solid state synthesis approach for the first time. Gas sensor properties of the as-synthesized nanocomposite material toward NO2 (from 5 to 60 ppm) are measured at 150 degrees C. Compared to the pure carbon tubes gas sensors, the nanocomposite gas sensor responds to NO2 in low concentrations with good linearity, high sensitivity, and fast recovery, while working at a relatively low temperature.  相似文献   

4.
Carbon monoxide (CO) gas sensors operating at room temperature were fabricated using rutile tin oxide and hexachloro-platinic acid to get a high dispersion rate of platinum in the tin oxide. The sensor material was analyzed by EDS, TG/DTA, SEM and FTIR. The number of chemisorbed atom per unit area and sensor sensitivity were related by space charge model. Gas sensing characteristics were investigated as a function of Pt content, heat-treatment temperature and operating temperature. The humidity dependence of the fabricated sensors is also discussed.  相似文献   

5.
A sensor for ammonia gas and ethanol vapour has been fabricated using indium oxide thin film as sensing layer and indium tin oxide thin film encapsulated in poly(methyl methacrylate) (PMMA) as a miniature heater. For the fabrication of miniature heater indium tin oxide thin film was grown on special high temperature corning glass substrate by flash evaporation method. Gold was deposited on the film using thermal evaporation technique under high vacuum. The film was then annealed at 700 K for an hour. The thermocouple attached on sensing surface measures the appropriate operating temperature. The thin film gas sensor for ammonia was operated at different concentrations in the temperature range 323–493 K. At 473 K the sensitivity of the sensor was found to be saturate. The detrimental effect of humidity on ammonia sensing is removed by intermittent periodic heating of the sensor at the two temperatures 323K and 448 K, respectively. The indium oxide ethanol vapour sensor operated at fixed concentration of 400 ppm in the temperature range 293–393 K. Above 373 K, the sensor conductance was found to be saturate. With various thicknesses from 150–300 nm of indium oxide sensor there was no variation in the sensitivity measurements of ethanol vapour. The block diagram of circuits for detecting the ammonia gas and ethanol vapour has been included in this paper.  相似文献   

6.
Pd-doped tin oxide nanoparticles dispersed in mesoporous silica were prepared by a thermal-decomposing method and characterized by isothermal nitrogen adsorption measurement, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tin oxide nanoparticles grow up slowly owing to confinement of the pores of the mesoporous silica. Due to the unique microstructure of the mesoporous silica, the obtained nanocomposite consists of a three-dimensional web of interconnected crystallites of tin oxide and exhibits electronic conductivity when enough tin oxide is assembled in the silica pores. The obtained nanocomposite has also a large specific surface area, and the tin oxide nanoparticles have a free surface in contact with the ambient air. Therefore, the samples exhibit a high sensitivity to CO gas, and have potential application.  相似文献   

7.
Post-treatment of the sensing film in tin oxide gas sensor arrays is widely used to improve the selectivity in gas recognition applications. This letter describes the characterization study of an integrated tin oxide gas sensor array chip in which the sensing films are modified using metal additives and ion implantations. Measurement results reveal that metal additives present a higher impact on the sensor sensitivity compared with ion implantations. The latter has no significant effect on the sensing properties. The drift is increased for the sensors with only ion implantation compared with the ones with metal additives. An array combining both post-treatment techniques is expected to improve the overall recognition performance.  相似文献   

8.
This letter reports the fabrication of a gas sensor based on a single tin oxide nanofiber made from dimethyldineodecanoate tin using electrospinning and metallorganics decomposition techniques. The fabricated sensor has been used to detect moisture and methanol gas. It showed high sensitivity to both gases and the response times of the complete testing system are in the range of 108-150 s for moisture, and 10-38 s for methanol gas, respectively.  相似文献   

9.
In this work, copper oxide-doped (1, 3 and 5 wt%) tin oxide powders have been synthesised by sol–gel method and thick film sensor array has been developed by screen printing technique for the detection of H2S gas. Powder X-ray diffraction pattern shows that the tin oxide (SnO2) doped with 3 wt% copper oxide (CuO) has smaller crystallite size in comparison to 0, 1 and 5 wt% CuO-doped SnO2. Furthermore, field emission scanning electron microscopy manifests the formation of porous film consisting of loosely interconnected small crystallites. The effect of various amounts of CuO dopant has been studied on the sensing properties of sensor array with respect to hydrogen sulfide (H2S) gas. It is found that the SnO2 doped with 3 wt% CuO is extremely sensitive (82%) to H2S gas at 150 °C, while it is almost insensitive to many other gases, i.e., hydrogen (H2), carbon monoxide (CO), sulphur dioxide (SO2) and liquefied petroleum gas (LPG). Moreover, at low concentration of gas, it shows fast recovery as compared to response time. Such high performance of 3 wt% CuO-doped SnO2 thick film sensor is probably due to the diminishing of the p–n junction and the smallest crystallite size (11 nm) along with porous structure.  相似文献   

10.
The sensing response of pure and SnO2 activated Cr2O3 to ethanol vapours and liquefied petroleum gas (LPG) has been investigated. Fine particles of commercial chromium oxide powder were selected and deposited as thick film to act as a gas sensor. The sensor surface has been activated by tin dioxide, on surface oxidation of tin chloride. The concentration of tin chloride solution, used as activator, was varied from 0 to 5% and its effect on gas response, selectivity and operating temperature has been studied. It was found that response to ethanol vapours significantly improved, whereas response to LPG remained unaffected. Moreover, operating temperature remains unchanged both for LPG and ethanol vapours.  相似文献   

11.
纳米SnO2的制备技术及应用   总被引:8,自引:1,他引:7  
SnO2为N型半导体结构,是一种优良的气敏和湿教材料。介绍了纳米SnO2的主要用途以及电弧气相法、溶胶—凝胶法、水热反应法和机械化学法等制备技术,探讨了SnO2的气敏机理,包括晶体尺寸效应和掺杂效应,并指出了纳米SnO2的发展前景。  相似文献   

12.
Semiconducting tin oxide precursor powders were synthesized via three different chemical processing routes. The influence of powder processing conditions on the physical properties, e.g., particle size, surface area and phase composition of both uncalcined and calcined materials, was investigated. These powders were used to fabricate gas sensors using thick-film screen-printing technology. The effect of precursor powders, sintering conditions, sensor temperature and Pd catalyst on the carbon monoxide, methane, propane and ethanol gas sensing characteristics of the sensors were investigated. Sensors were also fabricated using tin oxide powders obtained from a commercial source and their gas sensing properties were also investigated. The data indicates that the powder processing methodology, sensor fabrication conditions and Pd catalyst can profoundly influence the physical characteristics as well as the gas sensing properties of the sensors.  相似文献   

13.
Barium stannate, BaSnO3, an n-type semiconducting oxide with cubic perovskite structure, has been prepared by the thermal decomposition of barium carbonate (BaCO3) and tin tetrahydroxide (Sn(OH)4). The material was characterized by various physical techniques such as differential thermal analysis (DTA/TG), X-ray diffraction (XRD), BET surface area, Fourier transform infra-red (FT-IR) spectroscopy and scanning electron microscopy (SEM). Of its several applications, this material has proven to be one of the successful candidates for the detection of liquefied petroleum gas (LPG). The sensor has a very good selectivity to detect LPG in comparison to other reducing gases, like carbon monoxide and methane.  相似文献   

14.
Recently, oxide semiconductor material used as transducer has been the central topic of many studies for gas sensor. In this paper we investigated the characteristic of a thick film of tin dioxide (SnO2) film for chemical vapor sensor. It has been prepared by screen-printing technology and deposited on alumina substrate provided with two gold electrodes. The morphology, the molecular composition and the electrical properties of this material have been characterized respectively by Atomic Force Spectroscopy (AFM), Fourier Transformed Infrared Spectroscopy (FTIR) and Impedance Spectroscopy (IS). The electrical properties showed a resistive behaviour of this material less than 300 °C which is the operating temperature of the sensor. The developed sensor can identify the nature of the detected gas, oxidizing or reducing.  相似文献   

15.
Stability is a major concern of semiconductor-metal-oxide (SMO) gas sensors in practical applications, as they may cause false alarm problems. Ambient temperature is a major factor affecting the SMO gas sensor's stability. In this paper, we use a novel way to improve temperature stability of SMO (tin oxide) gas sensors by applying a temperature feedback control circuits which are compatible with our microelectromechanical systems sensor fabrication. A built-in platinum temperature sensor can precisely detect the sensor's working temperature. It provides feedback information to compensate the microheater's current to maintain the sensor's working temperature constant, regardless of ambient temperature change. Test results showed that, with this approach, significant improvement of stability has been achieved compared to SMO gas sensors without temperature compensation under the same ambient variation. The algorithm is realized through a hardware circuit, whose advantages include real time, large feedback gain, and low cost.  相似文献   

16.
The nanostructured SnO2 gas sensor with Au electrodes and Pt heater has been fabricated as one unit via screen printing process. The gas sensor was tested for CH4 sensing behavior at 350 degrees C in the concentration range of 500-10,000 ppm. Those mesoporous SnO2 sensors exhibited the similar sensoring properties in CH4 and CO detection. The fast speed of response and high sensitivity were obtained for mesoporous tin oxide sensor as compared to non-porous one.  相似文献   

17.
An NO2 micro gas sensor was fabricated based on a micro-heater using tin oxide nano-powders for effective gas detection and monitoring system with low power consumption and high sensitivity. The processes of the fabrication were acceptable to the conventional CMOS processes for mass-production. Semiconducting SnO2 nano-powders were synthesized via the co-precipitation method; and to increase the sensitivity of the NO2 gas rare metal dopants were added. In the structure of the micro-heater, the resistances of two semi-circular Pt heaters were connected to the spreader for thermal uniformity. The resistance of each heater becomes an electrically equal Wheatstone-bridge, which was divided in half by the heat spreading structure. Based on the aforementioned design, a low-power-consumption micro-heater was fabricated using the CMOS-compatible MEMS processes. A bridge-type micro-heater based on the Si substrate was fabricated via surface micro-machining. The NO2 sensing properties of a screen-printed tin oxide thick film device were measured The micro gas sensors showed substantial sensitivity down to 0.5 ppm NO2 at a low power consumption (34.2 mW).  相似文献   

18.
Indium tin oxide films were grown on glass substrate by rf magnetron sputtering at 648 K. Influence of rf power on structural properties of the ITO films was studied. XRD measurements showed (222) preferred orientation under the optimized deposition conditions. The surface morphology of ITO films analyzed by scanning electron microscope appears to be uniform over the entire surface area, the film exhibited dense layers with fine grains. Finally, ITO sensor device was fabricated and the sensing properties of the device towards hydrogen gas were investigated. The variation in sensitivity of the ITO sensor with operating temperature and with concentration of hydrogen gas was studied. The maximum response was found to be 1.6 at 400 K, for 1,000 ppm of hydrogen gas, and the response of the sensor was found to decrease with increase in concentration of H2 gas.  相似文献   

19.
In the present work, solid-state reaction and sol–gel route derived pure tin oxide (SnO2) powders have been used to develop the palladium (Pd)-doped SnO2 thick film sensors for detection of liquefied petroleum gas (LPG). Efforts have been made to study the gas sensing characteristics i.e., sensor response, response/recovery time and repeatability of the thick film sensors. The response of the sensors has been investigated at different operating temperatures from 200 to 350 °C in order to optimise the operating temperature which yields the maximum response upon exposure to fixed concentration of LPG. The optimum temperature is kept constant to facilitate the gas sensing characteristics as a function of the various concentration (0.25–5 vol%) of LPG. The structural and microstructural properties of Pd-doped SnO2 powder and developed sensors have been studied by performing X-ray diffraction and field emission electron microscopy measurements. The improvement in the response along with better response and recovery time have been correlated to the reduction in crystallite size of SnO2 powder and morphology of printed sensor in thick film form. It is found that the thick film sensor developed by using sol–gel route derived SnO2 powder with an optimum doping of 1 wt% Pd is extremely sensitive (86 %) to LPG at 350 °C.  相似文献   

20.
Pure and cerium (Ce) doped tin oxide (SnO2) thin films are prepared on glass substrates by jet nebulizer spray pyrolysis technique at 450 °C. The synthesized films are characterized by X-ray diffraction (XRD), scanning electron microscopy, energy dispersive analysis X-ray, ultra violet visible spectrometer (UV–Vis) and stylus profilometer. Crystalline structure, crystallite size, lattice parameters, texture coefficient and stacking fault of the SnO2 thin films have been determined using X-ray diffractometer. The XRD results indicate that the films are grown with (110) plane preferred orientation. The surface morphology, elemental analysis and film thickness of the SnO2 films are analyzed and discussed. Optical band gap energy are calculated with transmittance data obtained from UV–Visible spectra. Optical characterization reveals that the band gap energy is found decreased from 3.49 to 2.68 eV. Pure and Ce doped SnO2 thin film gas sensors are fabricated and their gas sensing properties are tested for various gases maintained at different temperature between 150 and 250 °C. The 10 wt% Ce doped SnO2 sensor shows good selectivity towards ethanol (at operating temperature 250 °C). The influence of Ce concentration and operating temperature on the sensor performance is discussed. The better sensing ability for ethanol is observed compared with methanol, acetone, ammonia, and 2-methoxy ethanol gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号