共查询到20条相似文献,搜索用时 15 毫秒
1.
Notch stress concepts for the fatigue assessment of welded joints - Background and applications 总被引:2,自引:0,他引:2
C.M. Sonsino W. FrickeF. de Bruyne A. HoppeA. Ahmadi G. Zhang 《International Journal of Fatigue》2012,34(1):2-16
Among modern fatigue design concepts for welded structures, the linear-elastic notch stress concept gains increasing industrial acceptance. There are two variants of this concept, one for thick walled (t ? 5 mm) welded joints with the reference radius rref = 1.00 mm, which is already included in the fatigue design recommendations of the IIW and applied for the assessment of big welded structures, and one for thin walled (t < 5 mm) welded joints with the reference radius rref = 0.05 mm, which is more and more used in the automotive industry.The concept with rref = 1.00 mm is based on the micro-support theory of Neuber with the fictitious radius rref = 1.00 mm, derived by Radaj. The background of the concept with rref = 0.05 mm is the relationship between the stress-intensity factor and the notch stress according to Creager and Paris as well as Irvin’s theory of crack blunting. Besides these two theories, the definition of both of these radii has also an experimental background; they are observed in many welded joints.In the present paper, first the background and then different applications of both concept variants are described: the application of the reference radius of rref = 1.00 mm for MAG-welded offshore K-nodes (t = 30 mm) and sandwich panels for ship decks (t = 5 mm), and the application of rref = 0.05 mm for spot-welded automotive doors (t = 1 mm) and MAG-welded automotive trailing links (t = 3-4 mm). The sandwich panels were evaluated additionally with rref = 0.05 mm. Calculations and experimental results are compared and the reliability of the notch stress concept variants underlined. Additionally, recommendations for the slope of design lines distinguishing between thin and thick dimensions are given, i.e. k = 3.0 and 5.0 (normal stress, shear stress) for thick and stiff structures, k = 5.0 and 7.0 for thin and flexible structures. 相似文献
2.
Recent developments in fatigue crack growth assessment 总被引:1,自引:0,他引:1
This paper examines the fatigue crack growth histories, at low to mid range ΔK’s, for a range of aircraft aluminium alloys, test specimens and service loaded components. It concludes that the crack growth history shows that, as a first approximation, there is a log–linear relationship between the apparent crack length or depth and the life (N), respectively. This leads to the further observation that, for the range of materials and spectra considered here, there is a linear relationship between the crack growth rate and the crack length when plotted on a log–log scale. 相似文献
3.
S. Greuling 《Materialwissenschaft und Werkstofftechnik》2008,39(10):749-753
The numerical fatigue assessment of seam welded joints is of significant importance in automotive industry. In order to use the fatigue concepts, which are available in the literature, in series calculations, they usually have to be implemented into commercial software programmes. In the following contribution the possibilities available are discussed with respect to the needs in automotive industry. No specific commercial software will be discussed in detail. At the end open questions for developments necessary in the future will be addressed. 相似文献
4.
Design of welded structures under fatigue is governed by two conflicting requirements: to minimize weight without compromising structure safety. Any theoretical and/or numerical approaches are necessarily based on some simplifying assumptions which, because of the complexity of fatigue phenomena, could miss some aspects involved in the real structure behaviour. On the other side, experimental approaches provide direct information on structure behaviour. In view of this, the paper will underline the importance of experimental observations and practical procedures to evaluate the stress/strain magnitude that could lead some components to unsafe working conditions. Experimental approaches may greatly support designers in all industrial applications where fast and reliable responses are strongly needed. 相似文献
5.
6.
The primary goal of this study was to develop an equation relating the geometric parameters to fatigue strength which can be used is routine design assessment. To attain this, the influence of local geometrical weld variations on the fatigue strength of non-load-carrying cruciform fillet welded joints were systematically studied using plane strain linear elastic fracture mechanics (LEFM). The effects of weld toe radius, flank angle and weld size were considered. Both continuous weld toe cracks and semi-elliptical toe cracks with alternate pre-existing defect depths were considered. A previously developed experimental crack aspect ratio development curve was used for assessing the growth of the semi-elliptical cracks using 2D FE models. A total of 152 experimental fatigue data points from six published studies of welded cruciform joints were evaluated. Details of the actual weld toe radius, flank angle and weld size were available for these joints. For the high quality welds evaluated, an assumed initial crack depth of 0.05 mm was found to correlate best with the experimental data. Of all the geometric parameters considered analytically, weld toe radius was found to have the most dramatic influence on fatigue life. A simple equation is proposed which relates welded joint fatigue strength to the ratio weld toe radius/plate thickness for high quality welds. 相似文献
7.
Accurate measurement of short (<1 mm depth) elliptical fatigue cracks that grow from the toes of fillet welds has proved to be an obstacle to the application of fracture mechanics principles to welding fatigue. This paper reports a DC potential drop technique which allows continuous measurement of the depth of such elliptical cracks. A delicate compromise between sensitivity and accuracy, combined with superior electrical stability displayed by the measurement apparatus, has allowed detection of: 1 — crack growth less than 0.01 mm and; 2 — crack growth rates less than 10?7 mm/cycle for cracks less than 1 mm deep.Preliminary results have indicated the relative importance of stress ratio, defect size and material variation on the growth of these short elliptical cracks. When the weld toe is subject to high stress ratios the phenomenon may be considered propagation dominated whereas low stress levels increase the influence of threshold and initiation mechanisms. 相似文献
8.
Several concepts are used for the fatigue design of welded joints. In this paper investigations are presented, which were carried out in a joint project between five research institutes [1]. The aim is to investigate currently applied fatigue concepts with respect to their limitations, compatibility and reliability, in order to improve the accuracy of lifetime estimation and to simplify the choice of the optimum fatigue concept. Here, the results of the investigation of welded joints in rotating universal joint shafts are shown [2]. In the critical weld, a structural steel and a quenched and tempered steel are joined. In practice, stresses result from rotating bending, torsion and also residual stresses are sometimes present. Several welding techniques, MAG, TIG and laser welding, and two seam geometries were investigated with regard to their influence on fatigue strength. Experiments were conducted with welded tube specimens representative of the actual component application and with derived flat specimens as detail specimens. The welded sheet thickness was 5.5 mm. Fatigue strength was investigated from 104 to 107 numbers of cycles. In numerical analyses, nominal stress, structural hot spot stress and elastic notch stress with reference radii of 0.3 mm and 0.05 mm were calculated. In the comparison of the concepts, their respective advantages and disadvantages have been demonstrated. A comparison of the results with the IIW recommendation for fatigue design of welded joints and components [3] has been carried out and improvements have been suggested. 相似文献
9.
The recently increased interest in very high cycle fatigue properties of materials has led to extended use and further development of the ultrasonic fatigue testing technique. Specimens are stimulated to resonance vibrations at ultrasonic frequency, where the high frequency allows collecting lifetime data of up to 1010 cycles and measuring crack propagation rates down to 10?12 m per cycle within reasonable testing times. New capabilities and methods of ultrasonic testing and outstanding results obtained since the year 1999 are reviewed. Ultrasonic tests at load ratios other than R = ?1, variable amplitude tests, cyclic torsion tests and methods for in situ observation of fatigue damage are described. Advances in testing at very high temperatures or in corrosive environments and experiments with other than bulk metallic materials are summarized. Fundamental studies with copper and duplex steel became possible and allowed new insights into the process of very high cycle fatigue damage. Higher cyclic strength of mild steels measured at ultrasonic frequency because of plastic strain rate effects are described. High‐strength steels and high‐alloy steels are less prone to frequency influences. Environmental effects that can lead to prolonged lifetimes in some aluminium alloys and possible frequency effects in titanium and nickel and their alloys are reviewed. 相似文献
10.
11.
Mean stress effects in steel weldments were examined under both constant and random narrowband amplitude fatigue loadings. The purpose of these tests was to provide experimental data with which to substantiate the use of analytical expressions to account for mean stress effects. Fatigue tests were performed under both tensile and compressive mean stress levels. Test results indicate agreement with the modified Goodman equation to be favorable in accounting for the effect of tensile mean stresses on fatigue life. However, test results from high fatigue loadings (maximum stresses nominally above half ultimate) were found to possess better agreement with the Gerber formulation than with the modified Goodman one. Behavior under compressive mean stresses indicated a linear correction relationship was required, which was less conservative than any of the relationships considered. Test results obtained under random amplitude fatigue loadings exhibited trends similar to those observed under constant amplitude loadings. This finding, along with supporting analysis, indicates that the same correction relationship can be used in the same manner for both constant amplitude and random (narrowband) amplitude loadings. 相似文献
12.
Reliability updating of welded joints damaged by fatigue 总被引:1,自引:0,他引:1
C. Cremona 《International Journal of Fatigue》1996,18(8):567-575
The paper introduces a probability-based fatigue assessment model for welded joints in steel bridges. The approach is based on a modelization of the fatigue phenomenon issued from the principles of fracture mechanics theory. The safety margin includes the crack growth propagation and allows us to treat fatigue damage in a general manner. Damaging cycles and non-damaging cycles are distinguished. The reliability calculus is performed by a FORM technique. The sensitivity study of the different parameters shows that some variables can be taken as deterministic. Applications are made on a welded joint ‘bottom plate/stiffener’ of a typical steel bridge. The model is then used for taking into account inspection results. A sensitivity analysis of different non-destructive inspection (NDI) methods is carried out for measuring their uncertainty levels. The different types of inspection results (no detection, detection with no measurement, detection with measurement) are analysed and a general methodology for updating reliability levels is given. The results show their ability to be inserted in a maintenance strategy for optimizing the next inspection time, the need to repair or to replace the joint, and, the eventual possibility of no action. 相似文献
13.
This paper investigates the use of the JV parameter, a path-independent integral, for the evaluation of the elastic local stress parameters in welded details and for the estimation of their fatigue life.First, the stress intensity factors (SIF) of an embedded crack lying along the bisector of a sharp V-notch is calculated by means of the JV without modelling the crack and by keeping the same external load and boundary conditions of the cracked model. Furthermore, the notch stress intensity factors (NSIFs) of the welds can be calculated after a post processing procedure of FE analysis with the advantage of using coarse meshes.Second, a correlation between the fatigue life of welded details and the JV parameter is shown. In fact, careful analysis of the fracture surface of fillet welds taken from literature and of new fatigued joints indicates that the first stage of fatigue crack propagation follows the bisector line of the local V-notch as only mode I would be present. Therefore, since the JV evaluated on a suitable integration path represents the SIF of an embedded crack lying along the bisector, the JV is used for the fatigue life assessment of welded details. The critical characteristic length of a suitable integration path for welded joints made of steel and aluminium alloys has been calculated. These critical characteristic lengths were used for the evaluation of two fatigue general scatter bands, mainly based on fatigue data of non-load-carrying cruciform joints characterised by a V-notch angle of 135°. Further, fatigue life data of steel and aluminium alloy welded connections have also been investigated when both mode I and mode II loadings are singular. 相似文献
14.
An analysis of fatigue cracks in fillet welded joints 总被引:1,自引:0,他引:1
S. J. Maddox 《International Journal of Fracture》1975,11(2):221-243
In most of the lower fatigue strength welded joints failure occurs by the propagation of a semi-elliptical surface crack which initiates at the weld toe. In order to analyse the progress of these cracks using fracture mechanics techniques, the solution for the stress intensity factor, K, is required. Fatigue cracks in most welded joints adopt shapes which give low a/2c values (up to approximately 0.3) while solutions in the literature are more applicable to a/2c values close to 0.5. Therefore, results in the literature were used to estimate the stress intensity factor for cracks with low a/2c values. Furthermore, the effect of the weld stress concentration factor was incorporated in the solution. The accuracy of the resulting solution was confirmed by using it to determine ΔK values of weld toe cracks for which crack propagation data were available. The results agreed with the expected da/dN vs. ΔK scatterband obtained from centre-notched specimens. 相似文献
15.
16.
17.
Fatigue loading appears frequently at many machine parts and it can, under certain conditions, cause a failure. Many parts of an internal combustion engine are subjected to a raised temperature where the fatigue properties are different than they are at room temperature. The exhaust system is one of the parts that are loaded with fatigue at different temperatures, known as thermo mechanical fatigue (TMF). Welds are used frequently in the exhaust system and present critical locations for crack initiation. During loading initial crack can propagate through a section to a final failure, so if the lifetime of the exhaust system is determined by the results of a base material, it can be misjudged. In the paper it is presented that the fatigue degradation regards to the weld influence. Test sample preparation, material and special high cycle fatigue testing manner are also presented. Test specimens without weld, with weld and additionally with aging influence are used. The material exposure to increased temperature over time affects the stress–strain response and other mechanical properties. This effect is known as aging and the results of this influence on the fatigue of welded parts are presented and discussed. 相似文献
18.
19.
An approach is presented, based on the weight function method to calculate the stress intensity factors of semielliptical surface cracks originating from the notch root of welded joints. The stress distribution along the potential crack plane required in the weight function method is constructed on the basis of the notch stress intensity factor approach in the highly stressed zone and of the equivalent linearized stress distribution and is compared with those determined by the finite element method and existing predictions. The stress intensity factors determined by the proposed approach are compared with available solutions. These comparisons show that the results determined by the proposed approach generally agree well with the existing solutions. For the cases where the agreement is poor, the reasons are identified. One important feature of the proposed approach is that the stress singularity at sharp notch tip can be considered, which cannot be appropriately simulated by the finite element method. Finally, to demonstrate the applicability of the proposed approach, the fatigue life and the fatigue crack shape evolution of welded joints are predicted and they are compared with experimental results. 相似文献
20.
Recent developments in the understanding of fretting fatigue 总被引:2,自引:0,他引:2
Considerable progress has been made in the understanding of fretting fatigue over the last decade. Experiments have become more standardised and carefully controlled and this has provided the data necessary for development of methods for predicting fretting fatigue performance. This paper reviews a number of recent developments, starting with attempts to apply multiaxial initiation criteria to the fretting problem. The importance of the size effect is highlighted and an analogy is made between fretting and notch fatigue. Methods for characterising crack initiation using asymptotic analysis are discussed, together with short crack arrest concepts which provide a means of predicting fretting fatigue limits from plain fatigue data. 相似文献