首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Nb2O5 hollow nanospheres of average diameter ca. ~29 nm and hollow cavity size ca. 17 nm were synthesized using polymeric micelles with core–shell–corona architecture under mild conditions. The hollow particles were thoroughly characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal (TG/DTA) and nitrogen adsorption analyses. Thus obtained Nb2O5 hollow nanospheres were investigated as anode materials for lithium ion rechargeable batteries for the first time. The nanostructured electrode delivers high capacity of 172 mAh g?1 after 250 cycles of charge/discharge at a rate of 0.5 C. More importantly, the hollow particles based electrodes maintains the structural integrity and excellent cycling stability even after exposing to high current density 6.25 A g?1. The enhanced electrochemical behavior is ascribed to hollow cavity coupled with nanosized Nb2O5 shell domain that facilitates fast lithium intercalation/deintercalation kinetics.  相似文献   

2.
Preparation of hollow carbon nanospheres via explosive detonation   总被引:1,自引:0,他引:1  
Hollow carbon nanospheres were prepared via a rapid detonation technique, by using negative-oxygen balance explosive trinitrotoluene and nickel powder as starting materials and inorganic acid as solvent. The carbon/metal nanocomposite particles precursor with core-shell structure was engendered firstly during detonation, and then the metal nickel core was dissolved through inorganic acid to attain the hollow carbon nanospheres. High-Resolution Transmission Electron Microscope, X-ray diffraction and Raman spectrum were used to characterize the precursor and the as-synthesized samples respectively. The results show that the external diameter of the hollow carbon nanospheres is 25-150 nm and the thickness of the wall is about 2-10 nm. The surface of hollow carbon nanosphere displays multilayer wall in structure with 0.35 nm space between the layers. Based on the experimental results, possible formation mechanism was also proposed.  相似文献   

3.
Coordination polymer (CP) core-shell particles, with Eu-based CP as the core and La-based CP as the shell, were prepared using a facile microwave heating method. Pyridine-2, 5-dicarboxylic acid (PDA) was selected as the organic building blo, and DMF was used as the solvent. SEM and TEM images show that the resultant cores are nanospheres with diameters of 200–400 nm. Products with different shell thickness were prepared. The luminescence properties of the core-shell structures were studied and the influence of the La-based CP shell on the photoluminescence properties of the core were investigated. The fluorescence intensity and lifetime of the Eu-based CP core were varied with the addition of shell thickness. Both of them increases at first and then decreases with the increase of shell thickness.  相似文献   

4.
A versatile one-step pyrolysis method is successfully employed to fabricate hollow carbon nanospheres (HCNs, ca. 60 nm in diameter) supported with metallic nanoparticle catalyst. The resultant catalyst hybrid was characterized by using TEM, FTIR, TGA measurements. It is confirmed that, as the carbon precursor and hollow core/shell structure template, hollow chitosan nanospheres provide the important adsorption sites for the metallic precursor. The one-step pyrolysis process at 750 degrees C under nitrogen atmosphere results in the simultaneous decomposition of the chitosan nanospheres to HCNs and the adsorbed metal salt complex to metallic nanoparticles. It is found that metallic nanoparticles with an average diameter of ca. 4 nm highly dispersed in the carbon shell of HCNs, and no aggregation phenomenon occurs under the high deposition temperature. As a demonstration, the HCNs-supported Pt catalyst for the electrochemical methanol oxidation was studied.  相似文献   

5.
Core-shell composite nanoparticles consisting of a gold core and polypyrrole shell were prepared and stabilized with the poly(amidoamine) dendrimer. An in situ redox polymerization technique was used in which pyrrole reduced Au3+ to Au and then oxidized to polypyrrole. The presence of gold nanoparticles as a core was characterized by its surface plasmon absorption peak at 534 nm. Fourier transform infrared spectroscopy confirmed the presence of polypyrrole on the nanoparticle surfaces. The average diameter of the core-shell nanoparticle is 8.7 +/- 1.8 nm with a shell thickness of approximately 1.5-2.0 nm as estimated from the transmission electron microscopy image. Dissolution of the Au core using KCN enabled the formation of hollow polymer nanospheres.  相似文献   

6.
Wurtzite ZnS hollow nanospheres were fabricated using PS nanospheres as templates by a facile method at relative low temperature. The prepared hollow nanospheres are uniform, monodispersed with homogeneous size of around 480 nm, and spherical shape. The shell thickness of these hollow nanospheres is about 60 nm, and composed of many wurtzite ZnS nanocrystals with the size of 8 nm. The definite shape, thick and denser shell with higher specific surface area reveals that these hollow nanospheres will find a great deal of potential applications in environment protection, photocatalysis and so on.  相似文献   

7.
ZnO hollow nanospheres were fabricated using polystyrene (PS) microspheres as templates were demonstrated in this paper. The structures and morphologies of obtained products were characterized by XRD, FESEM and TEM. The results revealed that ZnO hollow nanospheres possess a hexagonal wurtzite structure with a diameter around 450–500 nm. Ultraviolet–visible (UV–vis) analysis showed that ZnO hollow nanospheres had high absorption in the ultraviolet region and low absorption in the visible region. Room temperature photoluminescence (PL) spectrum showed a weak UV emission at 380 nm and a strong and broad yellow emission centered at 550 nm. The formation mechanism of hollow structure was also investigated.  相似文献   

8.
ZrO2 hollow microspheres with the average diameter of about 500 nm and the shell thickness of about 50 nm were synthesized by a facile technique using carbon spheres as templates. The corresponding ZrO2 hollow microspheres were obtained by calcining the precursors of C-Zr(OH)4 core-shell heterostructures, which were synthesized with the precipitation of ZrCl4 solution with aqueous ammonia on the surface of colloid carbons. SEM, XRD, TGA and BET were used to characterize the composition, morphology, size and crystal structure of synthesized products. The effects of ultrasonic dispersion and separation process on the hollow spheres were studied, and the surfactant PEG-1000 was added to tune the shell structure of synthesized ZrO2 hollow spheres.  相似文献   

9.
Homogeneous SiO2-coated cobalt nanospheres with tunable silica shell thickness from 21.7 nm to 4.5 nm were synthesized by using modified Stöber method. These nanocomposites were used as source materials to prepare SiO2 semi-hollow and hollow nanospheres by partially and completely etching cobalt cores, respectively. A proposed formation mechanism of these Co/SiO2 nanospheres with a core/shell structure was presented in this paper, which is also important for the rational design and synthesis of other monodisperse core/shell nanoarchitectures with uniform size and shape. Furthermore, these Co/SiO2 nanospheres were also used as a substrate for the deposition of CdS nanocrystals to prepare magnetic luminescent Co/SiO2/CdS nanocomposites.  相似文献   

10.
《Advanced Powder Technology》2019,30(12):3171-3181
The control of coating shell becoming important to improve the applicability of magnetic nanoparticles. Herein, we present the scalable technique for preparing MgFe2O4/SiO2 core-shell nanospheres with finely tuned shell thickness and their efficiency in magnetic hyperthermia heating agent. At first, MgFe2O4 dense nanosphere derived from one-step ultrasonic spray pyrolysis (USP) technique. Silica shells were then coated on the as prepared nanospheres with tunable thickness from 10 to 30 nm. We show that the thickness of this coating is finely controlled at allowing our proposed level by using the required amount of SiO2 precursor (SiC8H20O4)/acidic catalyst (HCl) ratio where the surface area of core nanospheres are significantly considered. X-ray diffraction reveals the cubic spinel ferrite structure of core particles with crystallite size 9.6 ± 1.8 nm and Fourier transform infrared spectrum analysis confirmed the formation of SiO2. The morphological observation clarified the uniform and smooth SiO2 shell where core-shell nanostructure is highly monodispersed in a liquid medium. M-H loops confirmed the superparamagnetic nature of all samples at room temperature. Significantly reduced ion release concentration in an aqueous solvent of the coated nanospheres compared with uncoated sample demonstrates the hermetically coating feature of dense SiO2. This MgFe2O4/SiO2 core-shell nanospheres with thine SiO2 shell (10 nm) shows effective heating rate in the operative region (<46 °C) which makes them promising candidates for application as magnetic hyperthermia heating agent.  相似文献   

11.
Uniform copper sulfide hollow nanospheres were obtained in high yield by reacting copper nitrate with thioacetamide in water at room temperature under the assistance of sodium dodecyl sulfate (SDS). The spheres (average diameter of ca. 200 nm) displayed big cavity while their surface were constructed by randomly stacked nanoflakes. The products were characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectrometry (EDX), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). SDS was found to play a key role in the synthesis process while a four-step mechanism was proposed to explain the formation of hollow nanospheres. The influence of SDS concentration on the size and shape of the product has also been investigated in detail.  相似文献   

12.
A ternary system of SiO2-CaO-P2O5 hollow nanospheres has been successfully prepared by sol-gel method using polystyrene (PS) nanospheres as template. The inorganic shell was produced using tetraorthosilicate (TEOS) as the silica source and tri-calciumphospate as calcium and phosphorus sources, respectively. The positive surface charge of the template and the [template]/[TEOS] ratio were the key parameters for the creation of a stable primary inorganic network and the further growth of the shell. The removal of the polymeric core through a thermal treatment procedure created an inner void space with mean diameter 250 nm while the outer mean diameter was 330 nm.  相似文献   

13.
无机材料纳米空心球的制备方法研究进展   总被引:10,自引:0,他引:10  
探索新的纳米结构已成为近年来物理、化学、材料等领域的研究热点之一.纳米空心球作为一种新的纳米结构,其特有的核-壳空心结构及纳米厚度的壳层使它具有许多优异的物理化学性能,从而在医学、制药学、材料学、染料工业等领域具有很好的应用前景.本文综述了模板法和由模板法发展而来的L-bL自组装法制备无机材料纳米空心球的一般过程及原理,最后展望了纳米空心球材料的发展前景,并探讨了目前在无机材料纳米空心球研究领域中存在的问题.  相似文献   

14.
在无水无氧条件下通过热分解还原制备Co纳米微粒,利用Co9S8和ZnO晶格的相匹配性,通过层层自组装对Co表面进行修饰,得到Co/Co9S8/ZnO核壳结构纳米微球.采用XRD、TEM、SQUID、光致发光光谱(PL)等对产物进行了表征.通过调节反应参数制备出核壳结构的Co/Co9S8/ZnO复合纳米微球,平均粒径58.8nm,壳层厚度均匀,常温下显示铁磁性,矫顽力为18.7kA/m.PL表明,产物在380~390nm处的带边跃迁不明显,光致发光最强峰在468nm处,属氧缺陷发射峰,研究了影响产物形貌的主要因素.结果表明,以油酸(OLA)及三正辛基氧化磷(TOPO)为溶剂和表面活性剂,Zn(acac)2温度为70℃、用量为1mmol,控制Co的硫化反应时间为5min,有利于核壳结构产物的形成.初步分析了Co/Co9S8/ZnO核壳结构纳米微球的形成机理.  相似文献   

15.
Spherical SiO2 particles have been successfully coated with zinc borate layers through a self-assembly process. The resulted SiO2-Zn5B4O11 core-shell nanospheres were characterized by X-ray diffraction (XRD), infrared spectra (IR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectrometer (EDS). The obtained SiO2-Zn5B4O11 core-shell nanospheres have perfect spherical shape with narrow size distribution (average diameters 50 nm), i.e., the cores with mean diameters of 40 nm and the shells with an average thickness of 5 nm, monodisperse and smooth surface. Moreover, the friction coefficient of the base oil was decreased by the addition of SiO2-Zn5B4O11 core-shell nanospheres.  相似文献   

16.
ZnS包覆SiO2三维核壳结构或空腔结构纳米球可用于光子晶体的组装.本实验采用层层自组装法,利用二氧化硅模板表面的静电作用吸附纳米晶粒子,生成纳米晶包覆层,制备核壳结构的SiO2@ZnS和SiO2@ZnS:Mn^2+纳米球.控制氢氟酸对二氧化硅的蚀刻程度,制备了空腔型硫化锌纳米球.采用XRD、UV、PL、TEM、SEM、AFM等测试手段对核壳结构和空腔型硫化锌纳米球进行了表征.结果表明ZnS纳米晶包覆SiO2后,在其表面形成了包裹紧密、形貌规整、粒径均一的ZnS壳层;经5%氢氟酸蚀刻得到的空腔纳米球结构完好、厚度均匀.  相似文献   

17.
《Materials Research Bulletin》2006,41(7):1242-1248
W/WS2 inorganic fullerene-like (IF) nanoparticles with core–shell structure are synthesized by the reaction of tungsten nanospheres and sulfur at relatively low temperatures (380–600 °C) under hydrogen atmosphere, in which tungsten nanospheres were prepared by wire electrical explosion method. Images of transmission electron microscopy and high-resolution transmission electron microscopy show that the composite particles are of core–shell structure with spherical shape and the shell thickness is about 10 nm. X-ray powder diffraction results indicate that the interlayer spacing of IF-WS2 shell decreases and approaches that of 2H-WS2 with increasing annealing temperatures, representing an expansion of 3.3–1.6%. A mechanism of IF-WS2 formation via sulfur diffusion into fullerene nanoparticles is discussed. Thermal analysis shows that the nanoparticles obtained at different temperatures exhibit similar thermal stability and the onset temperature of oxidization is about 410 °C. Encapsulating hard tungsten core into IF-WS2 and the spherical shape of the core–shell structures may enhance their performance in tribological applications.  相似文献   

18.
Novel hollow micro/mesoporous organosilica nanospheres (HMOSNs) of uniform diameter and shell thickness of about 90 nm and 15 nm, respectively, and with wormlike micro/mesoporous shell full of uramido groups, have been successfully fabricated by a facile one-pot route. The micro/mesoporosity of the synthesized HMOSNs has been characterized by small-angle and wide-angle X-ray diffraction (XRD), scan electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption measurements. The drug storage and release properties of the synthetic HMOSNs are measured by using ibuprofen (IBU) as a model drug, and a high drug storage capacity of 531 mg IBU per gram HMOSNs and a steady drug release behavior are exhibited.  相似文献   

19.
Sm-Fe-Ta-N-O nanospheres were synthesized by pulsed-laser deposition from a Sm(13.8)Fe(82.2)Ta(4.0) target in a nitrogen atmosphere. Three structurally and compositionally distinct types were identified: amorphous, core-shell and hollow nanospheres. Amorphous spheres were compositionally homogeneous and completely oxidized. The core-shell spheres were composed of an iron-rich crystalline core with up to 10?at.% interstitially incorporated nitrogen, surrounded by an amorphous and oxidized shell. The hollow spheres were characterized by voids filled with N(2) gas. It was found that the formation of either amorphous or complex nanospheres is defined by an initial Fe/Sm ratio within the molten droplet. The formation of hollow spheres is believed to be related to the general affinity of liquid metals for gas intake. During rapid solidification the dissolved gas in the melt is trapped within the surrounding solid rim, preventing the outwards diffusion of gas. As long as the amount of gas atoms in the melt is kept below its solubility limits it can be completely interstitially incorporated into the solid, thus forming crystalline Fe(N)-rich cores. If the melt contains more than an equilibrium amount of nitrogen it is possible that the gas recombines to form N(2) molecules, which are condensed inside the spheres.  相似文献   

20.
In soap-free latex media, poly(styrene-methyl methacrylate)/MCM-41 core/shell composite microspheres have been fabricated by adding silicate source in batches. In this process, silicate species and the surfactant micelles were self-assembled into 2-dimensional hexagonal arrangement on the surface of P(St-MMA) microspheres. Hollow MCM-41 microspheres were obtained via removing polymer core by solvent. XRD, TEM, IR and N2 adsorption-desorption analysis were applied to characterize products. The results showed that average diameter and wall thickness of hollow MCM-41 microspheres is about 240 nm and 20 nm, respectively. Results of N2 adsorption-desorption indicate that hollow MCM-41 microspheres possess a highly ordered mesoporous structure and a narrow pore distribution with a mean value of 2.34 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号