首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this work, the alternative refrigerants were evaluated as a drop-in of an R-22-based refrigeration system. The tested system comprises a variable-speed scroll compressor, an electronic expansion valve, a hot-and-cold water circuit and their respective heat exchangers. To make a fair comparison among fluids, only the lubricant type and refrigerant charge were varied to ensure good system functionality. The system performance was evaluated, varying the expansion valve opening to achieve evaporation temperatures of −5 °C, −10 °C and −15 °C. The same methodology was applied for various frequencies using an inverter drive. It was carried out in more than 200 experiments, and the response surface method was used to analyze the results. For all tested conditions, the R-438A was the most flexible alternative among the tested refrigerants as a drop-in of R-22 operating with a scroll compressor since the system operated in a wider range of values. Meanwhile, the R-1270 had the highest cooling capacity value and the lowest TEWI.  相似文献   

3.
A comprehensive model of a linear compressor for electronics cooling was previously presented by Bradshaw et al. (2011) then enhanced and used for a sensitivity analysis of the leakage gap, eccentricity, and piston geometry by Bradshaw et al. (2013). The current work utilizes the previously developed model to explore the energy recovery characteristics of a linear compressor as compared to those of a reciprocating compressor. The impact of dead (clearance) volume on both a linear and reciprocating compressor is analyzed. In contrast to a reciprocating compressor the overall isentropic efficiency of the linear compressor remains relatively unaffected by an increase in dead volume up to a certain point. This behavior is attributed to the ability of the linear compressor to recapture the energy of the compressed gas during the expansion process. This characteristic behavior allows a linear compressor to be used for efficient capacity control from roughly 35–100%.  相似文献   

4.
In this study, a CO2 automotive air conditioner prototype was designed and constructed. The compressor was of swash plate design; the gas cooler and evaporator were made of fin-tubes; a manual expansion valve and an internal heat exchanger accumulator were used. The lubricant, the CO2 charge, the evaporator outlet pressure, the compressor speed, the air inlet temperature and flow rate of the gas cooler and the air flow rate of the evaporator were varied and the performance of the prototype was experimentally investigated in detail. The cooling capacity, compressor power consumption, CO2 mass flow rate, and COP value were analyzed. The experimental results showed that the CO2 system performance was greatly affected by different lubricants; the CO2 system performance was sensitive to the mass charge; the high side pressure affected the system performance greatly and a high side pressure controller was needed.  相似文献   

5.
一种产品数据交互式的变频压缩机理论模型   总被引:1,自引:0,他引:1       下载免费PDF全文
为了在空调系统仿真软件中实现用户自己定义的压缩机模型的应用和数据保密,本文开发了产品数据交互式变频压缩机模型。该模型通过将压缩机理论模型转化为可以直接拟合的形式,并利用产品数据进行拟合,其中线性流量方程通过对理论模型中的频率项进行线性化处理然后通过插值法推导得出,非线性功率方程采用残差极小值法进行线性求解得出;产品数据的保密通过将产品数据定义为私有函数并开发相应的接口函数,然后采用动态链接库对已定义的产品数据函数进行封装来实现。结果验证表明所开发的模型能准确地预测压缩机特性,最大偏差小于±5%,能够适用于系统仿真且能够做到产品数据保密。  相似文献   

6.
The energy and exergy parameters of R417A and R424A gases which can be used instead of R22 were experimentally investigated for a split-type air conditioner. Although GWP amounts of the available alternative refrigerants are higher compared to R22, their ODP values are zero. The experiments were accomplished for three different ambient temperature values of 25 °C, 30 °C and 35 °C. The covered test conditions were carried out for steady-state case while keeping the inside medium temperature at constant temperature of 22 °C. The cooling capacity, COP, exergy destruction of components in the unit (i.e., compressor, condenser, evaporator, and expansion device), exergetic efficiency and some other parameters of the system were determined. COP values for the refrigerants of R417A and R424A were noted to be smaller compared to R22. Similarly, both isentropic efficiency of the compressor and exergetic efficiency of the system were higher for R22. The use of R424A will be more suitable rather than R417A since COP values of R417A are lower about 5–16% compared to R424A. The COP value of R22 is greater than that of R417A and R424A by amounts of 17–23% and 4–18%, respectively. At the greater evaporation temperatures (0 °C to +5 °C as in the air-conditioners) it can be stated that R424A is more preferable than R417A as an alternative refrigerant to R22.  相似文献   

7.
For residential buildings located in the subtropics, direct expansion (DX) air conditioning (A/C) units are commonly used. Most DX A/C units are currently equipped with single-speed compressors and supply fans, relying on on–off cycling compressors as a low-cost approach to maintain only indoor air dry-bulb temperature, resulting in either space overcooling or an uncontrolled equilibrium indoor relative humidity (RH) level. With the rapid development of A/C industry, the use of variable-speed compressor and supply fan has become more and more prevalent and practical. This paper, the first part of a two-part series, reports on the development of a novel direct digital control (DDC)-based capacity controller for a DX A/C unit having variable-speed compressor and supply fan to simultaneously control indoor air temperature and RH in a conditioned space served by the DX A/C unit. The controller is the first of its kind as a composite parameter, sensible heat ratio (SHR), is used as a controlled parameter. The core element of the capacity controller, a numerical calculation algorithm (NCA) is firstly presented. This is followed by reporting the results of preliminary controllability tests of the DDC-based capacity controller, which suggested that the controller developed could achieve a reasonable control accuracy, but with room for improvement with respect to control sensitivity. Part II of the two-part series reports on the further development of the controller to improve its control sensitivity, and the results of associated controllability tests.  相似文献   

8.
This article presents the development, validation, and comparison of two methods for modeling a reciprocating compressor. Initially, the physical mode is based on eight internal sub-processes that incorporate infinitesimal displacements according to the piston movement. Next, the analysis and modeling of the compressor through the application of artificial neural networks are presented. The input variables are: suction pressure, suction temperature, discharge pressure, and compressor rotation speed. The output parameters are: refrigerant mass flow rate, discharge temperature, and energy consumption. Both models are validated with experimental data for the refrigerants R1234yf and R134a; computer simulations show that mean relative errors are below ±10% with the physical model, and below ±1% when artificial neural networks are used. Additionally, the performance of the models is evaluated through the computation of the squared absolute error. Finally, these models are used to compute an energy comparison between both refrigerants.  相似文献   

9.
Numerical methods are provided to analyze dynamic characteristics as well as steady-state performance of a multi-type heat pump system. Lumped parameter method was applied to simulate the compressor and expansion device. Additionally, fully distributed method was used for analyzing the condenser and evaporators. The transient terms in the governing equations for heat exchangers were solved adopting the wave equation solutions. The simulation results predict the steady-state performance of a heat pump system with the deviation of ±10%. The transient simulation showed satisfactory responses of temperatures and pressures for various compressor speeds or expansion valve openings. From the results, it was shown that the operating conditions of secondary fluid of one indoor unit had minor influence on the performance of the other unit, while opening of expansion valve affected the transient responses of both evaporators significantly.  相似文献   

10.
A novel Proportional-Derivative (PD)law based Fuzzy Logic Controller (PFC) for a variable speed (VS) direct expansion (DX) air conditioning (A/C) system has been developed. There were two coupled control loops in this controller, i.e., varying supply fan speed to control indoor dry-bulb temperature (Tdb), and compressor speed indoor wet-bulb temperature (Twb). To weaken the coupling effect between the two loops, fuzzy logic principles were deployed. Furthermore, a PD law was used instead of a Proportional-Integral-Derivative (PID) law, in the PFC, which helped simplify not only calculation but also the structure of the PFC. The controller developed was validated by carrying out the controllability tests with the experimental conditions covering the normal operational range of a VS DX A/C system. The experimental results of the controllability tests suggested that the novel PFC developed is capable of realizing the simultaneous control of indoor temperature and humidity satisfactorily, in terms of control accuracy and sensitivity.  相似文献   

11.
This study reports the effect of particle mass compositions on the bed expansion behaviour of a binary solid liquid fluidised bed (SLFB) system. Experiments were performed comprising equal density (2230 kg m?3) spherical glass beads particles of diameter 3, 5 and 8 mm and water as fluidising medium with different particle mass ratios varying from 0.17 to 6.0. In the expanded bed, both segregated and intermixed zones were observed depending on the different particle diameter combinations. In a completely segregated SLFB, the bottom monosized layer exhibited a negative deviation ~23% whereas a positive deviation ~25% was found in the top monosized layer when compared with the corresponding pure monosized system. A small mixing zone spanning approximately two particle diameters thick was observed to exist even in a completely segregated SLFB for higher diameter ratio cases. A slight decrease in the mixing zone height was noted with increasing liquid superficial velocity. For lower diameter ratio cases, a relatively lager mixing zone height was observed which increased with increasing liquid superficial velocity. The bed expansion ratio was noted to decrease with increasing solid mass ratio however it increased with increase in the fluidising velocity ratio following a reasonable power law trend. The expanded bed height of the binary mixture was not entirely additive of its corresponding mono-component bed heights and both positive and negative deviations were observed. Finally, a two-dimensional (2D) Eulerian-Eulerian (E-E) model incorporating the kinetic theory of granular flow (KTGF) was used to quantify the binary system hydrodynamics. The model predicted expanded bed height agreed with experimental measurements within ±6% deviation. Presence of a mixing zone was also confirmed by the CFD model and simulated particle phase volume fraction distribution qualitatively agreed with the experimental visualisations.  相似文献   

12.
The utilization of electronic expansion valves (EEVs) in refrigeration and air conditioning systems is increased for energy saving and comfort environmental. However, experimental data and refrigerant mass flow models through EEVs are very limited in open literature. In this study, a new technique using artificial neural network (ANN) is applied to depict the mass flow rates of R22 and its alternatives R407C and R410A flowing through EEVs based on the error back propagation learning algorithm. Two strategies are followed; the first is to construct individual ANN models for each refrigerant, and the second is to construct a generalized ANN model for the three investigated refrigerants. The experimental results from open literature are used to construct the ANN models. The ANN models results showed a good agreement with the corresponding experimental data. For individual models, the relative deviations for R22, R407C, and R410A are within ±0.7%, ±1.1%, and ±0.006%, respectively. While for generalized model, the relative deviations are within ±2.5%. Also the generalized model was tested out of its construction range in a predictive mode and it was found to be a reliable tool to estimate the refrigerants mass flow rates.  相似文献   

13.
Thermodynamic analysis of a liquid-flooded Ericsson cycle cooler   总被引:1,自引:0,他引:1  
A novel approach to implementing a gas Ericsson cycle heat pump was developed. The concept, termed a liquid-flooded Ericsson cooler (LFEC), uses liquid flooding of the compressor and expander to approach isothermal compression and expansion processes. Analytical models of liquid-flooded compression and expansion processes were developed using ideal gas, constant specific heat, and incompressible liquid assumptions. Special considerations for use of positive displacement compressors with fixed volume ratios are detailed. The unique behavior of a liquid-flooded compressor was explored, including the discovery of an optimum liquid flooding rate that minimizes compression power. A computer model of the LFEC cycle was developed using ideal gas, incompressible liquid, and constant specific heat assumptions. The model was used for a thorough parametric study. The purpose of the study was to explore the feasibility of the concept, identify the optimum operating parameters, and to provide a basis for the design of an experimental system.  相似文献   

14.
A steady state computer simulation model has been developed for refrigeration circuits of automobile air conditioning systems. The simulation model includes a variable capacity compressor and a thermostatic expansion valve in addition to the evaporator and micro channel parallel flow condenser. An experimental bench made up of original components from the air conditioning system of a compact passenger vehicle has been developed in order to check results from the model. The refrigeration circuit was equipped with a variable capacity compressor run by an electric motor controlled by a frequency converter. Effects on system performance of such operational parameters as compressor speed, return air in the evaporator and condensing air temperatures have been experimentally evaluated and simulated by means of developed model. Model results deviate from the experimentally obtained within a 20% range though most of them are within a 10% range. Effects of the refrigerant inventory have also been experimentally evaluated with results showing no effects on system performance over a wide range of refrigerant charges.  相似文献   

15.
This work presents the experimental evaluation of R-513A (GWP = 573) and R-450A (GWP = 547) as R-134a (GWP = 1301) drop-in replacements and as R-507A (GWP = 3987) retrofits in a commercial direct expansion refrigeration system for medium temperature applications (2 °C). The evaluation covered 24-hour tests using a single-stage cycle with semi-hermetic compressor, an electronic expansion valve customized for each refrigerant and a commercial vertical cabinet with doors placed inside a climatic chamber. The tests were performed at three water dissipation temperatures (23.3, 32.8 and 43.6 °C). Experimental results indicate that R-513A and R-450A can operate with R-134a plants, with increments in energy consumption between −1.6 to +1.2% for R-513A and from +1.3 to +6.8% for R-450A, whereas in comparison with R-507A, R-513A offered reductions in energy consumption between 4.4 to 8.2% and R-450A between 0 to 3.3%. The paper analyzes the modification of the operating pressures/temperatures and the energy indicators using the four refrigerants.  相似文献   

16.
The development of the novel direct digital control (DDC)-based capacity controller for a direct expansion (DX) air conditioning (A/C) unit having variable-speed compressor and supply fan to simultaneously control indoor air temperature and relative humidity (RH) in a conditioned space served by the DX A/C unit has been reported in Part I of the two-part series. The results of preliminary controllability tests for the novel capacity controller presented in Part I, however, suggested that the controller developed was operational, with acceptable control accuracy but rooms for improvement with respect to control sensitivity. This paper, the second part of the two-part series, reports on the further development of the controller to improve its control sensitivity and the associated controllability test results. Both control accuracy and reasonable control sensitivity were achieved by incorporating a traditional Proportional–integral (PI) controller into the DDC-based capacity controller.  相似文献   

17.
邹慧明  王英琳  唐明生  李旋  汤鑫斌 《制冷学报》2021,42(4):122-129+141
采用气体轴承的主动耗气技术可以实现直线压缩机的无油润滑和非接触运行,以保证运行可靠性。为研究多孔质轴承的结构参数和压缩机设计参数对耗气量的影响,本文以R600a为制冷工质,建立了多孔质气体轴承模型,利用Fluent对耗气量进行了仿真模拟计算,基于该模型模拟分析了多孔质材料厚度、间隙气膜厚度、排气压力、压缩机频率和排量占比对气体轴承耗气量和耗气率的影响,并通过实验测试验证了该模型的准确性。结果表明:气体轴承耗气量的仿真结果和实验测量的误差在±15%以内。根据耗气率给出了最佳的设计参数组合,为直线压缩机用多孔质气体轴承优化设计提供了参考。  相似文献   

18.
A new type of oil-free moving magnet linear compressor with clearance seals and flexure springs has been designed for incorporation into a vapour compression refrigeration system with compact heat exchangers for applications such as electronics cooling. A linear compressor prototype was built with a maximum stroke of 14 mm and a piston diameter of 19 mm. An experimental apparatus was built to measure the compressor efficiencies and coefficient of performance (COP) of a refrigeration system with the linear compressor, using R134a. The resonant frequency for each operating condition was predicted using the discharge pressure, suction pressure and stroke. Refrigeration measurements were conducted for different strokes under each pressure ratio with a fixed condenser outlet temperature of 50 °C and evaporator temperature ranging from 6 °C to 27 °C. The results show that the COPs are around 3.0 for tests with a pressure ratio of 2.5 (evaporator temperature of 20 °C).  相似文献   

19.
This paper outlines an algebraic model for simulating the transcritical expansion of carbon dioxide through adiabatic capillary tubes. The model was put forward based on the analytical solution of the momentum conservation equation assuming an isenthalpic expansion process. The theoretical model predictions were compared with 66 experimental data points covering different operating conditions and tube geometries. A good agreement between the experimental and calculated mass flow rates was achieved, with more than 94% of the data points lying within an error band of ±10%.  相似文献   

20.
A model of a novel rotary spool compressor has been developed to explore the effect of multiple injection ports on compressor and cycle performance. The thermodynamic model includes the effects of heat transfer and leakage and is numerically solved to predict the compressor power consumption and mass flow rate. Saturated vapor injection is modeled assuming that the injection pressures and the timing of the injection process can be controlled.The model predicts that adding a single injection port will provide a 12% increase in the cycle coefficient of performance (COP) when the compressor runs at 1907 rpm with R-22 evaporating at ?7 °C, condensing at 49 °C, and 15 °C of superheat. Adding a second, non-optimized injection port increases the COP by 16% compared to the cycle without injection. The model is used to investigate the effect of injection pressure, port location, and port diameter on cycle performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号