首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Issues stemming from district heating utilization during summer periods and the conversion of low-temperature heat into cold in adsorption chillers have been investigated in this paper. Due to the high vulnerability of adsorption chillers to ambient conditions, in the case of relatively low ambient temperatures, adsorption-based air-conditioning systems would be characterized by excessive cooling power. Moreover, adsorption chillers are also characterized by high investment costs and big time constants, and the vulnerabilities found in their regulatory processes have yet to be sufficiently investigated. The authors recommend the application of hybrid air-conditioning systems, consisting of adsorption and compressor chillers. The adsorption chiller works as a base while the compressor chiller contributes missing cooling power, working as a regulation unit. Sixteen configurations of the hybrid air-conditioning system have been analysed. It has been shown that 100 kW cooling power hybrid air-conditioning system, with respect to its configuration, enables the utilization of 0.5 to 0.9 TJ of low-temperature heat per year, while simultaneously providing comfortable air-conditioning. The authors have concluded that the adsorption share in the analysed hybrid system should not exceed 50%.  相似文献   

2.
The present research conducted a parametric study on an embossed plate heat exchanger (plate HX) type adsorption chiller with SWS-1L and water pair, using a numerical method. The plate HX has a relatively high heat transfer capacity and compact size, and this study is a first attempt to apply the plate HX as a new type of adsorption chiller, as an improved alterative to the fin-tube type heat exchanger. A feasibility study was conducted on the base model and the result is comparable to the value for existing fin-tube type adsorption chillers. Furthermore, a parameter study was conducted for seven important design parameters, embossing diameter ratio, embossing height, embossing pitch, bed thickness, plate thickness, heating temperature and heat transfer fluid velocity. The results provided guidelines for the optimal designs of plate HX type adsorption chiller. The optimal values of COP and SCP were 0.5118 and 662.8 W kg−1, respectively.  相似文献   

3.
This paper presents a transient simulation model that is useful for predicting the dynamic performance of vapour-compression liquid chillers over a wide range of operating conditions. The model employs a thermal capacitance approach for specific state variables to account for the dynamics of the chiller and ancillaries. The model accounts for the change in heat transfer coefficients throughout the heat exchangers thereby improving both physical realism and the accuracy of the simulation model. The model requires only a select few initial conditions (eg. the chilled water and condenser water temperatures). A simple compressor model based on empirical regression has been employed in the simulation. The outputs of the model include system performance variables such as the compressor electrical work input and the coefficient of performance (COP) as well as states of the refrigerant throughout the refrigeration cycle with respect to time. The model is validated with data from two in -situ screw chillers. Predictions are found to be within ±10%, although for one of the chillers a degree of empiricism was employed for the evaporator tube wall mass in order to give satisfactory results for the start-up process.  相似文献   

4.
This paper presents a steady-state model for predicting the performance of vapour-compression liquid chillers over a wide range of operating conditions. The model overcomes the idealisations of previous models with regard to modelling the heat exchangers. In particular, it employs an elemental NTU- methodology to model both the shell-and-tube condenser and evaporator. The approach allows the change in heat transfer coefficients throughout the heat exchangers to be accounted for, thereby improving both physical realism and the accuracy of the simulation model. The model requires only those inputs that are readily available to the user (e.g. condenser inlet water temperature and evaporator water outlet temperature). The outputs of the model include system performance variables such as the compressor electrical work input and the coefficient of performance (COP) as well as states of the refrigerant throughout the refrigeration cycle. The methodology employed within the model also allows the performance of chillers using refrigerant mixtures to be modelled. The model is validated with data from one single screw chiller and one twin-screw chiller where the agreement is found to be within ±10%.  相似文献   

5.
We experimentally show that for the same heat exchanger inventory allocation, a four-bed adsorption chiller delivers a 12% higher ultimate cooling capacity than its two-bed counterpart. In addition it delivers a significantly improved quality of instantaneous cooling than a two-bed chiller at the same cooling capacity. The COP-enhancing feature of a passive heat recovery scheme that does not involve additional pumping action or valves is experimentally proven. It improves the COPs of a two-bed chiller and a four-bed chiller by as much as 38 and 25%, respectively, without any effect on their cooling capacities. The highest COPs achieved with a two-bed and four-bed chillers are 0.46±0.02 and 0.45±0.02, respectively. These are measured at a hot-water inlet temperature of 85 °C, cooling-water inlet temperature of 29.4 °C and chilled-water inlet temperature of 12.2 °C.  相似文献   

6.
A multi-bed regenerative adsorption chiller design is proposed. The concept aims to extract the most enthalpy from the low-grade waste heat before it is purged into the drain. It is also able to minimise the chilled water temperature fluctuation so that downstream temperature smoothing device may be downsized or even eliminated in applications where tighter temperature control may be required. The design also avoids a master-and-slave configuration so that materials invested are not under-utilised. Because of the nature of low-grade waste heat utilization, the performance of adsorption chillers is measured in terms of the recovery efficiency, η instead of the conventional COP. For the same waste heat source flowrate and inlet temperature, a four-bed chiller generates 70% more cooling capacity than a typical two-bed chiller. A six-bed chiller in turn generates 40% more than that of a four-bed chiller. Since the beds can be triggered into operation sequentially during start-up, the risk of ice formation in the evaporator during start-up is greatly reduced compared with that of a two-bed chiller.  相似文献   

7.
Adsorption chiller technology is one of effective means to convert waste thermal energy into cooling, which substantially improves energy efficiency and lowers environmental pollution. This article develops an improved lumped-parameter model for multi-bed silica gel-water adsorption chillers. It is validated by experimental results stemming from a four-bed silica gel-water adsorption chiller at various operating conditions. It is found that the performance predictions from this model compare favourably with experimental results. At all tested conditions and over a wide range of cycle times, the cooling capacity and COP can be predicted to within 10% and 12%, respectively.  相似文献   

8.
Over the past few decades there have been considerable efforts to use adsorption (solid/vapor) for cooling and heat pump applications, but intensified efforts were initiated only since the imposition of international restrictions on the production and utilization of CFCs and HCFCs. In this paper, a dual-mode silica gel–water adsorption chiller design is outlined along with the performance evaluation of the innovative chiller. This adsorption chiller utilizes effectively low-temperature solar or waste heat sources of temperature between 40 and 95 °C. Two operation modes are possible for the advanced chiller. The first operation mode will be to work as a highly efficient conventional chiller where the driving source temperature is between 60 and 95 °C. The second operation mode will be to work as an advanced three-stage adsorption chiller where the available driving source temperature is very low (between 40 and 60 °C). With this very low driving source temperature in combination with a coolant at 30 °C, no other cycle except an advanced adsorption cycle with staged regeneration will be operational. The drawback of this operational mode is its poor efficiency in terms of cooling capacity and COP. Simulation results show that the optimum COP values are obtained at driving source temperatures between 50 and 55 °C in three-stage mode, and between 80 and 85 °C in single-stage, multi-bed mode.  相似文献   

9.
This article develops an improved lump-parameter design model to investigate the water-circulation heat recovery scheme as applied to the two-bed silica gel–water adsorption chillers. We demonstrate that performance predictions stemming from this improved lump-parameter formalism compare favorably with experimental results at various conditions, particularly at the industrial rated conditions. We find that the present lump-parameter formalism adequately elucidates the water-circulation heat recovery scheme as does the distributed-parameter formalism. In the studied working condition of a two-bed silica gel–water adsorption chiller, the differences in cooling capacities and coefficients of performance (or COP) by using the two different formalisms are typically less than 10%. This gives rise to a useful and rapid design tool for the industry.  相似文献   

10.
DOE-2模型被广泛应用于冷水机组仿真建模,如何根据有限传感器实测数据对某特定冷水机组DOE-2模型的参数进行可靠地辨识,并补偿模型误差,对于节能运行等场景具有重要意义.在实践中由于传感器不足且数据质量不高等问题,DOE-2模型参数的可靠辨识较为困难.因此,本文提出一种基于外部知识库的遗传算法和一种基于人工神经网络的方...  相似文献   

11.
A pre-industrial prototype of a new water-cooled ammonia/lithium nitrate absorption chiller was characterised at part-load operation mode. The chiller was built using brazed plate heat exchangers in all its components, including the absorber and the generator.A test campaign was carried out varying the thermal load in the chilled water circuit and keeping the hot and cooling water temperatures constant.Part-load curves of the thermal and electrical coefficients of performance were obtained, plotted and compared with data from the literature on small capacity absorption chillers with conventional working pairs, namely ammonia/water and water/lithium bromide. The experimental results showed that to achieve a higher electrical coefficient of performance at part-load operation, it was much more convenient to use an ON-OFF control than to modify the hot water temperature. Furthermore, using a simple ON-OFF control strategy, the behaviour of the new absorption chiller was more agile and responded more quickly.The part-load curve of the electrical coefficient of performance was obtained by adjusting the experimental data to the shape of the curve proposed in the standard prEN-14825:2011 for air-to-water chillers. The Cc coefficient was 0.7985 matching the value obtained dividing the remaining electrical consumption measured during the OFF half cycles by the total energy consumption generated.  相似文献   

12.
A performance analysis was carried out on water–LiBr absorption chillers performing in the five different climate zones in Algeria. A 17.6 kW single-effect and a 16 kW double-effect commercial absorption chillers were simulated. In climate zones E1 and E2, the single-effect and double-effect chillers supplied 37% and 91%, respectively, of their nominal capacity to produce chilled water at 7 °C. In the hot climate zones E3, E4 and E5, it was not feasible for either of the chillers to produce chilled water at 7 °C. By increasing the chilled water temperature to 12 °C both absorption chillers were able to operate in climate zones E3 and E4. The single-effect chiller reached 45% of its nominal capacity in zone E3 and 33% in zone E4. The double-effect chiller delivered 80% of its nominal capacity in both climate zones. Neither of the chillers was able to operate under the thermal conditions of climate zone E5.  相似文献   

13.
Typically the cooling capacity of absorption chillers is controlled by adjusting the driving hot water temperature according to the load. Meanwhile the cooling water temperature is controlled to a constant set value. In order to increase the solar cooling fraction and/or to decrease the operating costs of solar assisted cooling systems (SAC-systems) a new control strategy has been developed which controls hot and cooling water temperature simultaneously. Hereby the specific cost of cold – generated from solar or conventional heat – can be reduced. The basic concept of the strategy is explained and results are shown for the SAC-system at the Federal Environment Agency in Dessau, Germany. Here a recently developed absorption chiller is now used instead of a former adsorption chiller. With the new absorption chiller and the control strategy the seasonal energy efficiency ratio SEER is above 0.75, electric efficiency is 35% higher and water consumption is reduced by 70%.  相似文献   

14.
15.
A new steady-state model of vapour-compression type centrifugal liquid chillers is presented. The model has a number of advanced features and is capable of simulating both hermetic and open-drive centrifugal compressors. The model accounts for the real process phenomena such as superheating and subcooling in the heat exchangers as well as a capacity control formulation of the inlet guide vanes. The model algorithm is developed with the aim of requiring only those inputs that are readily known to the design engineer, e.g. the general parameters of the chiller, the chilled water flow temperature out of the evaporator and the return water temperature to the condenser inlet. The outputs include the condenser capacity, the refrigeration capacity (at the evaporator), the coefficient of performance, and also the mass flow rates and thermodynamic states of the refrigerant throughout the cycle. The model is validated with the experimental data on part load to full load performance of three different chillers operating at the University of Auckland and the agreement is found to be within ±10%. The model also demonstrates that the COP of the chillers increases with increasing cooling capacity.  相似文献   

16.
The efficiency of chillers (refrigeration and heat pump devices) is limited by the dissipation from their principal components: compressor, throttler, and heat exchangers at the condenser and evaporator. Developing a generalized finite-time thermodynamics model for reciprocating chhillers, we derive analytic formulae for how the fixed finite resources of cycle time and heat exchanger inventory should be allocated so as to optimize chiller performance. Our predictions for optimal operating schemes are compared with detailed experimental data from two different commercial chillers. The agreement between theory and actual performance data attests to the empirical wisdom that has evolved in chiller manufacture. Besides quantitatively documenting the individual sources of irreversibility, we show how the limitations of currently-available chiller components affect optimal chiller design, as well as how potentials steps to improve chiller efficiency can be evaluated within a universal thermodynamic framework.  相似文献   

17.
在冷热电等多功能联产子系统中,溴化锂吸收式制冷机是常用的供冷设备,DOE-2关于冷源特性模拟的经验模型是分析其典型变工况特性的解析方法之一。分析了吸收式制冷机特性DOE-2模型的适用范围。为扩展吸收式制冷机特性DOE-2模型的适用范围,以双效蒸汽型溴化锂吸收式制冷机为例,对DOE-2模型中的能量消耗特性引入冷媒水温度变化的修正,给出一个DOE-2模型的修正式,经与实际数据和理论模型对比证明其合理有效。在能源动力系统中的应用案例表明,修正的DOE模型可用于快速分析吸收式制冷机定水流量时的典型变工况特性,对故障诊断、性能预测等具有理论意义,也便于工程上初步进行系统优化配置和经济运行。  相似文献   

18.
基于遗传算法的冷水机组负荷分配与出水温度的优化   总被引:3,自引:0,他引:3  
根据冷水机组的能耗与其部分负荷率的相关特性,提出基于遗传算法的冷水机组最小能耗的优化分配,从而获得各台机组的负荷分配率以及在此分配下的冷机出水温度优化设定,并对该分配进行MATLAB仿真.结果表明,该策略能够优化机组的运行并降低系统能耗.  相似文献   

19.
The concept of an air-cooled absorption chiller system is attractive because the cooling tower and the associated installation and maintenance issues can be avoided. However, crystallization of the LiBr–H2O solution then becomes the main challenge in the operation of the chiller, since the air-cooled absorber tends to operate at a higher temperature and concentration level than the water-cooled absorber due to the relative heat transfer characteristics of the coolant. This leads to crystallization of the working fluid. The paper focuses on the crystallization issues and control strategies in LiBr–H2O air-cooled absorption chillers. As a result a novel application opportunity is proposed for the integration of absorption chillers into cooling, heating and power (CHP) systems. This new methodology allows for air cooler operation while avoiding crystallization.  相似文献   

20.
This paper aims to address the effect of using classical Linear Driving Force (LDF) model on the performance of adsorption chillers. A comparative study between the well known LDF equation and the Fickian diffusion (FD) model has been conducted. Two adsorbent/refrigerant pairs namely, RD silica gel/water and “CaCl2 confined to KSK silica gel”/water pairs have been used. Relative and absolute errors between adsorption uptakes estimated by both models have been estimated. It is found that the LDF model has numerous errors at relatively shorter adsorption times which imply that using LDF equation may lead to incorrect evaluation of the performance of adsorption chiller especially at short cycle times. This study also presents an improved form of LDF model considering the dependency of the particle mass transfer coefficient on the dimensionless time. Theoretical calculations show good agreement between the improved LDF approximation and the FD model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号