首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lately, copper‐assisted azide–alkyne cycloaddition (CuAAC) has become a very interesting tool for synthesizing biocompatible polymer‐based materials such as hydrogels or microgels, which can be used as biomaterials for tissue engineering and drug delivery. Novel poly(2‐hydroxyethyl aspartamide)s (PHEAs) functionalized with pendent acetylene or azide groups were prepared from polysuccinimide, which is the thermal polycondensation product of aspartic acid, through successful ring‐opening reactions using propargylamine, 1‐azido‐2‐aminoethane and ethanolamine. The composition of the prepared copolymers was analyzed using 1H NMR spectroscopy. Clickable PHEA derivatives were crosslinked by mixing together in water with a catalyst system of Cu(I) and N, N, N′, N′, N″‐pentamethyldiethylenetriamine, a type of Huisgen's 1,3‐dipolar azide‐alkyne cycloaddition. The reaction of the polymers resulted in a chemoselective coupling between alkynyl and azido functional groups with multiple formation of triazole crosslinks to give hydrogels. The triazole linkages in the hydrogels are highly stable and may also play a role in swelling behavior. PHEA‐based hydrogels were also obtained by the crosslinking of azide‐ or alkyne‐modified PHEA with a small‐molecule crosslinker. The hydrogels prepared using these two methods were characterized by their degree of swelling and the morphology of the hydrogels was confirmed using scanning electron microscopy. The approach we describe here presents a promising alternative to common chemical hydrogel preparation techniques, and these hydrogels seem to possess structures having potential for a variety of industrial and biomedical applications. © 2012 Society of Chemical Industry  相似文献   

2.
Traditional composite rocket propellants are cured by treatment of hydroxyl‐terminated prepolymers with polyfunctional aliphatic isocyanates. For development of smokeless composite propellants containing nitramines and/or ammonium dinitramide (ADN), energetic binder systems using glycidyl azide polymer (GAP) are of particular interest. Polyfunctional alkynes are potential isocyanate‐free curing agents for GAP through thermal azide‐alkyne cycloaddition and subsequent formation of triazole crosslinkages. Propargyl succinate or closely related aliphatic derivatives have previously been reported for such isocyanate‐free curing of GAP. Herein, we present the synthesis and use of a new aromatic alkyne curing agent, the crystalline solid bisphenol A bis(propargyl ether) (BABE), as isocyanate‐free curing agent in smokeless propellants based on GAP, using either octogen (HMX) and/or prilled ADN as energetic filler materials. Thermal and mechanical properties, impact and friction sensitivity and ballistic characteristics were evaluated for these alkyne cured propellants. Improved mechanical properties could be obtained by combining isocyanate and alkyne curing agents (dual curing), a combination that imparted better mechanical properties in the cured propellants than either curing system did individually. The addition of a neutral polymeric bonding agent (NPBA) for improvement of binder‐filler interactions was also investigated using tensile testing and dynamic mechanical analysis (DMA). It was verified that the presence of isocyanates is essential for the NPBA to improve the mechanical properties of the propellants, further strengthening the attractiveness of dual cure systems.  相似文献   

3.
合成了三种含酯基和三种含醚键的炔单体,通过核磁共振氢谱(1H NMR)、红外光谱(FT-IR)、质谱(MS)、液相色谱(LC)对其结构进行了表征。用这六种炔单体与叠氮单体反应制备了一系列新型聚三唑酯树脂(PTAE)和聚三唑醚树脂(PTAO)。利用差示扫描量热分析(DSC)、FT-IR、动态力学热分析(DMA)、力学试验机和热失重分析(TGA)表征了树脂的固化行为、固化树脂的力学性能、耐热性和热稳定性。结果表明PTAE和PTAO树脂易溶于有机溶剂,可低温(60℃)固化,固化树脂的弯曲强度超过了100 MPa,可达158 MPa,玻璃化转变温度(T g)超过180℃,高者达251℃,热分解温度可达360℃。  相似文献   

4.
5.
The in vivo incorporation of alkyne‐modified bases into the genome of cells is today the basis for the efficient detection of cell proliferation. Cells are grown in the presence of ethinyl‐dU (EdU), fixed and permeabilised. The incorporated alkynes are then efficiently detected by using azide‐containing fluorophores and the CuI‐catalysed alkyne–azide click reaction. For a world in which constant improvement in the sensitivity of a given method is driving diagnostic advancement, we developed azide‐ and alkyne‐modified dendrimers that allow the establishment of sandwich‐type detection assays that show significantly improved signal intensities and signal‐to‐noise ratios far beyond that which is currently possible.  相似文献   

6.
7.
Bis-alkylsulfonic acid and polyethylene glycol (PEG)-substituted BF2 azadipyrromethenes have been synthesized by an adaptable and versatile route. Only four synthetic stages were required to produce the penultimate fluorophore compounds, containing either two alcohol or two terminal alkyne substituents. The final synthetic step introduced either sulfonic acid or polyethylene glycol groups to impart aqueous solubility. Sulfonic acid groups were introduced by reaction of the bis-alcohol-substituted fluorophore with sulfur trioxide, and a double Cu(I)-catalyzed cycloaddition reaction between the bis-alkyne fluorophore and methoxypolyethylene glycol azide yielded a neutral bis-pegylated derivative. Both fluorophores exhibited excellent near-infrared (NIR) photophysical properties in methanol and aqueous solutions. Live cell microscopy imaging revealed efficient uptake and intracellular labelling of cells for both fluorophores. Their simple synthesis, with potential for last-step structural modifications, makes the present NIR-active azadipyrromethene derivatives potentially useful as NIR fluorescence imaging probes for live cells.  相似文献   

8.
N‐[2‐Methyl‐5‐(triazol‐1‐yl)phenyl]pyrimidin‐2‐amine derivatives were synthesized and evaluated in vitro for their potential use as inhibitors of Bcr‐Abl. The design is based on the bioisosterism between the 1,2,3‐triazole ring and the amide group. The synthesis involves a copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) as the key step, with the exclusive production of anti‐(1,4)‐triazole derivatives. One of the compounds obtained shows general activity similar to that of imatinib; in particular, it was observed to be more effective in decreasing the fundamental function of cdc25A phosphatases in the K‐562 cell line.  相似文献   

9.
Degradation of proteins by the proteasome is an essential cellular process and one that many wish to study in a variety of disease types. There are commercially available probes that can monitor proteasome activity in cells, but they typically contain common fluorophores that limit their simultaneous use with other activity-based probes. In order to exchange the fluorophore or incorporate an enrichment tag, the proteasome probe likely has to be synthesized which can be cumbersome. Here, we describe a simple synthetic procedure that only requires one purification step to generate epoxomicin, a selective proteasome inhibitor, with a terminal alkyne. Through a copper-catalyzed cycloaddition, any moiety containing an azide can be incorporated into the probe. Many fluorophores are commercially available that contain an azide that can be “clicked”, allowing this proteasome activity probe to be included into already established assays to monitor both proteasome activity and other cellular activities of interest.  相似文献   

10.
Alkyne functional phenolic resin was cured by azide functional epoxy resins making use of alkyne‐azide click reaction. For this, propargylated novolac (PN) was reacted with bisphenol A bisazide (BABA) and azido hydroxy propyloxy novolac (AHPN) leading to triazole‐linked phenolic‐epoxy networks. The click cure reaction was initiated at 40–65°C in presence of Cu2I2. Glass transition temperature (Tg) of the cured networks varied from 70°C to 75°C in the case of BABA‐PN and 75°C to 80°C in the case of AHPN‐PN. DSC and rheological studies revealed a single stage curing pattern for both the systems. The cured BABA‐PN and AHPN‐PN blends showed mass loss above 300°C because of decomposition of the triazole rings and the novolac backbone. Silica fiber‐reinforced syntactic foam composites derived from these resins possessed comparable mechanical properties and superior impact resistance vis‐a‐vis their phenolic resin analogues. The mechanical properties could be tuned by regulating the reactant stoichiometry. These low temperature addition curable resins are suited for light weight polymer composite for related applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41254.  相似文献   

11.
Most self‐healing materials based on noncovalent bonding suffer from poor mechanical performance, which largely limits their further application. Herein, we designed and synthesized robust and healable polymers that can be healed under heating. They consist of a linear and three‐arm branched polyurethane mixture with triazole ligand end groups that are noncovalently linked through Fe–triazole interaction. The three‐arm branched polyurethane in the polymer mixture would imply parts of Fe‐triazole coordination bonds were replaced by covalent bonds and, as a consequence, yield materials with improved mechanical properties. Additionally, the mechanical properties of resulting polymers can be tuned by the number of Fe–triazole supramolecular crosslinks. Due to the dynamic nature of Fe–triazole interaction, all the metallopolymers exhibit excellent healable efficiency (over 90%) based on toughness. © 2020 Society of Chemical Industry  相似文献   

12.
13.
Glycidyl azide polymer (GAP) is an important energetic binder candidate for new minimum signature solid composite rocket propellants, but the mechanical properties of such GAP propellants are often limited. The mechanical characteristics of composite rocket propellants are mainly determined by the nature of the binder system and the binder‐filler interactions. In this work, we report a detailed investigation into curing systems for GAP diol with the objective of attaining the best possible mechanical characteristics as evaluated by uniaxial tensile testing of non‐plasticized polymer specimens. We started out by investigating isocyanate and isocyanate‐free curing systems, the latter by using the crystalline and easily soluble alkyne curing agent bispropargylhydroquinone (BPHQ). In the course of the presented study, we then assessed the feasibility of dual curing systems, either by using BPHQ and isophorone diisocyanate (IPDI) simultaneously (synchronous dual curing), or by applying propargyl alcohol and IPDI consecutively (sequential dual curing). The latter method, which employs propargyl alcohol as a readily available and adjustable hydroxyl‐telechelic branching agent for GAP through thermal triazole formation, gave rise to polymer specimens with mechanical characteristics that compared favorably with the best polymer specimens obtained from GAP diol and mixed isocyanate curatives. The glass transition temperature (Tg) of non‐plasticized samples was heightened when triazole‐based curing agents were included, but when plasticized with nitratoethylnitramine (NENA) plasticizer, Tg values were very similar, irrespective of the curing method.  相似文献   

14.
The presence of the epoxy group in the structure of 1,8‐naphthalimide fluorophores opens up possibilities to prepare compounds with new valued properties through covalent bonding to both polyamide and epoxy oligomers. Two new 4‐(1‐amino‐2,3‐epoxypropyl)‐9‐substituted‐1,8‐naphthalimides were synthesized, and their absorption and fluorescence characteristics were determined. The introduction of the substituent contributes to both the yellow color and strong fluorescence of the compounds, the quantum yield being about 0.9. The possibility for structural coloration of polyamide textile materials and epoxy oligomers has been investigated. The modified polymers are with intense green fluorescence, possessing a strong resistance to various physico‐chemical treatments and light. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1863–1869, 2001  相似文献   

15.
Azido‐grafted cellulose has been reported widely applied for further functionalization by click chemistry. As an alternative method, we proposed alkyne‐grafted cellulose as a prototype molecule for Huisgen [3 + 2] cycloaddition with azido‐terminated target compounds. Alkyne cellulose was synthesized by acylation with prop‐2‐ynyl 5‐chloro‐5‐oxopentanoate and, subsequently cycloaddition with 4‐aminophenylazide, ethyl 2‐azidoacetate, and (S)‐2‐(Azidomethyl)‐1‐(tert‐butoxycarbonyl)pyrrolidine (Boc‐pyrrolidine azide) to form triazole cellulose in a click manner. The reactions were confirmed qualitatively by Fourier transform infrared and NMR spectroscopy and analyzed quantitatively with elemental analysis data. The results show that a degree of substitution of up to 1.91 was obtained for esterification and, in most cases, was preferred completely in a selective way for the primary hydroxyl groups at the O‐6 position and partially at the O‐2 and O‐3 positions. Cycloaddition conversions were found as high as 0.95, 0.99, and 0.99 for aniline–triazole cellulose, acetate–triazole cellulose, and Boc‐pyrrolidine‐triazole cellulose, respectively. Both esterification and cycloaddition were undertaken under mild conditions without additional heating. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44410.  相似文献   

16.
The copper(I)‐mediated azide–alkyne cycloaddition (CuAAC) of 3′‐propargyl ether and 5′‐azide oligonucleotides is a particularly promising ligation system because it results in triazole linkages that effectively mimic the phosphate–sugar backbone of DNA, leading to unprecedented tolerance of the ligated strands by polymerases. However, for a chemical ligation strategy to be a viable alternative to enzymatic systems, it must be equally as rapid, as discriminating, and as easy to use. We found that the DNA‐templated reaction with these modifications was rapid under aerobic conditions, with nearly quantitative conversion in 5 min, resulting in a kobs value of 1.1 min?1, comparable with that measured in an enzymatic ligation system by using the highest commercially available concentration of T4 DNA ligase. Moreover, the CuAAC reaction also exhibited greater selectivity in discriminating C:A or C:T mismatches from the C:G match than that of T4 DNA ligase at 29 °C; a temperature slightly below the perfect nicked duplex dissociation temperature, but above that of the mismatched duplexes. These results suggest that the CuAAC reaction of 3′‐propargyl ether and 5′‐azide‐terminated oligonucleotides represents a complementary alternative to T4 DNA ligase, with similar reaction rates, ease of setup and even enhanced selectivity for certain mismatches.  相似文献   

17.
We are developing a resin system that cures via triazole ring formation (cycloaddition reaction of azides with terminal alkynes) instead of the traditional oxirane/amine reaction. The high exothermicity of the azido/alkyne reaction is expected to yield higher extents of reaction under ambient-cure conditions, making the resin system potentially suitable for “out-of-autoclave” curing processes. The difunctional azide-terminated resin, di(3-azido-2-hydroxypropyl) ether of bisphenol-A, was selected as the baseline diazide. A number of alkyne crosslinkers were synthesized and characterized, including propiolate esters of di- and trifunctional alcohols, propargyl esters of di- and trifunctional carboxylic acids, propargyl ethers of di- and trifunctional alcohols, and N,N,N′,N′-tetrapropargyl derivatives of primary diamines. Commercially available tripropargyl amine was also studied. Those systems employing a propiolate-based alkyne were found to be much more reactive toward the Huisgen 1,3-dipolar cycloaddition than the propargyl species. Curing energetics as a function of alkyne type, investigated through a dynamic differential scanning calorimetry approach, showed a distinct divide between the averaged activation energies of the propiolate and propargyl-type crosslinkers, 69.2–73.6 kJ/mol versus 82.3–86.4 kJ/mol, respectively. Cured network properties were readily manipulated through the incorporation of varying amounts of di- versus tri- and tetra-functional alkynes or through incorporation of soft alkylene and alkyleneoxy versus rigid aromatic polyalkynes. As expected, mechanical properties, e.g., the temperature of the tan δ peak in dynamic mechanical analysis, were found to increase with increasing crosslink density. These results have allowed us to select the most promising systems for scale-up and fabrication of samples of both pure resin and composites for traditional mechanical property testing, which will be reported in a subsequent paper.  相似文献   

18.
Light hydrocarbons(C_1–C_4) are fundamental raw materials in the petroleum and chemical industry. Separation and purification of structurally similar paraffin/olefin/alkyne mixtures are important for the production of highpurity or even polymer-grade light hydrocarbons. However, traditional methods such as cryogenic distillation and solvent absorption are energy-intensive and environmentally unfriendly processes. Ionic liquids(ILs) as a new alternative to organic solvents have been proposed as promising green media for light hydrocarbon separation due to their unique tunable structures and physicochemical properties resulting from the variations of the cations and anions such as low volatility, high thermal stability, large liquidus range, good miscibility with light hydrocarbons, excellent molecular recognition ability and adjustable hydrophylicity/hydrophobicity. In this review, the recent progresses on the light hydrocarbon separation using ILs are summarized, and some parameters of ILs that influence the separation performance are discussed.  相似文献   

19.
Fluorescent probes have been widely investigated for their features of rapid response, easy operation and high sensitivity. Among them, reaction-based fluorescent probes, for their unique reaction-based nature, guarantee them with excellent selectivity, effectively avoiding the possible interference from other chemical and biological species in physiological environment. Conventional reaction-based fluorescent probes are aggregation-caused quenching (ACQ) fluorophores. The application of these kinds of probes are limited for their poor photostability and narrow Stokes shifts. Compared with ACQ fluorophores, aggregation-induced emission (AIE) fluorophores become emissive in aggregation states with higher signal-to-noise ratio, better photostability and larger Stokes shifts. In this review, we summarize the latest developed reaction-based AIE-active probes, including the design principle and application in various sensing systems and give an outlook for the future development of this kind of promising fluorescent probes.  相似文献   

20.
Human neutrophil elastase (HNE) is a serine protease associated with several inflammatory processes such as chronic obstructive pulmonary disease (COPD). The precise involvement of HNE in COPD and other inflammatory disease mechanisms has yet to be clarified. Herein we report a copper‐catalyzed alkyne–azide 1,3‐dipolar cycloaddition (CuAAC, or ′click′ chemistry) approach based on the 4‐oxo‐β‐lactam warhead that yielded potent HNE inhibitors containing a triazole moiety. The resulting structure–activity relationships set the basis to develop fluorescent and biotinylated activity‐based probes as tools for molecular functional analysis. Attaching the tags to the 4‐oxo‐β‐lactam scaffold did not affect HNE inhibitory activity, as revealed by the IC50 values in the nanomolar range (56–118 nm ) displayed by the probes. The nitrobenzoxadiazole (NBD)‐based probe presented the best binding properties (ligand efficiency (LE)=0.31) combined with an excellent lipophilic ligand efficiency (LLE=4.7). Moreover, the probes showed adequate fluorescence properties, internalization in human neutrophils, and suitable detection of HNE in the presence of a large excess of cell lysate proteins. This allows the development of activity‐based probes with promising applications in target validation and identification, as well as diagnostic tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号